RESUMO
The widespread use of herbicides has raised considerable concern with regard to their harmful consequences on plant growth, crop yield and the soil ecological environment. It has been well documented that colonization of rhizobacteria in the plant root system has a positive effect on activation of plant defenses to protect the plant from damage. Using the platform of high-throughput analysis with tandem mass spectrometry and Illumina sequencing, we identified the specific activated rhizobacteria, the key growth stimulating substances and the metabolic pathways involved in seedling stage tolerance to mefenacet stress in rice. The relative abundance of beneficial rhizospheremicrobes such as Acidobacteria and Firmicutes increased with mefenacet treatment, indicating that the rhizosphere recruited some beneficial microbes to resist mefenacet stress. Mefenacet treatment induced alterations in several interlinked metabolic pathways, many of which were related to activation of defense response signaling, especially the indole-3-pyruvate pathway. Indole-3-acetaldehyde and indole-3-ethanol from this pathway may act as flexible storage pools for indole-3-acetic acid (IAA). Our findings also suggest that a significant increase of IAA produced by the enrichment of beneficial rhizospheremicrobes, for example genus Bacillus, alleviated the dwarfing phenomenon observed in hydroponic medium following mefenacet exposure, which may be a key signaling molecule primarily for phytostimulation and phytotolerance in microbe-plant interactions.
Assuntos
Oryza , Rizosfera , Acetanilidas , Benzotiazóis , Raízes de Plantas , Microbiologia do SoloRESUMO
BACKGROUND: Cadmium (Cd) is a widespread toxic heavy metal pollutant in agricultural soil, and Cd accumulation in rice grains is a major intake source of Cd for Asian populations that adversely affect human health. However, the molecular mechanism underlying Cd uptake, translocation and accumulation has not been fully understood in rice plants. RESULTS: In this study, a mutant displaying extremely low Cd accumulation (lcd1) in rice plant and grain was generated by EMS mutagenesis from indica rice cultivar 9311 seeds. The candidate SNPs associated with low Cd accumulation phenotype in the lcd1 mutant were identified by MutMap and the transcriptome changes between lcd1 and WT under Cd exposure were analyzed by RNA-seq. The lcd1 mutant had lower Cd uptake and accumulation in rice root and shoot, as well as less growth inhibition compared with WT in the presence of 5 µM Cd. Genetic analysis showed that lcd1 was a single locus recessive mutation. The SNP responsible for low Cd accumulation in the lcd1 mutant located at position 8,887,787 on chromosome 7, corresponding to the seventh exon of OsNRAMP5. This SNP led to a Pro236Leu amino acid substitution in the highly conserved region of OsNRAMP5 in the lcd1 mutant. A total of 1208 genes were differentially expressed between lcd1 and WT roots under Cd exposure, and DEGs were enriched in transmembrane transport process GO term. Increased OsHMA3 expression probably adds to the effect of OsNRAMP5 mutation to account for the significant decreases in Cd accumulation in rice plant and grain of the lcd1 mutant. CONCLUSIONS: An extremely low Cd mutant lcd1 was isolated and identified using MutMap and RNA-seq. A Pro236Leu amino acid substitution in the highly conserved region of OsNRAMP5 is likely responsible for low Cd accumulation in the lcd1 mutant. This work provides more insight into the mechanism of Cd uptake and accumulation in rice, and will be helpful for developing low Cd accumulation rice by marker-assisted breeding.
Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Oryza/genética , Proteínas de Plantas/genética , Poluentes do Solo/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Perfilação da Expressão Gênica , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de SequênciaRESUMO
A highly sensitive method was developed for the simultaneous separation and determination of organic and inorganic selenium species in rice by ion-pairing reversed-phase chromatography combined with inductively coupled plasma tandem mass spectrometry. To achieve a good separation of these species, a comparison between anion-exchange chromatography and ion-pairing reversed-phase chromatography was performed. The results indicated that ion-pairing reversed-phase chromatography was more suitable due to better separation and higher sensitivity for all analytes. In this case, a StableBond C18 column proved to be more robust or to have a better resolution than other C18 columns, when 0.5 mM tetrabutylammonium hydroxide and 10 mM ammonium acetate at pH 5.5 were used as the mobile phase. Moreover, an excellent sensitivity was obtained in terms of interferences by means of tandem mass spectrometry in the hydrogen mode. The detection limits were 0.02-0.12 µg/L, and recoveries of five selenium species were 75-114%, with relative standard deviations ≤ 9.4%. This method was successfully applied to the analysis of rice samples. Compared with previous studies, the proposed method not only gave comparable results when used for measuring selenium-enriched rice, but it can provide greater sensitivity for the detection of low concentrations of selenium species in rice.
Assuntos
Oryza/química , Selênio/análise , Selênio/isolamento & purificação , Acetatos/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Hidrogênio/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Compostos de Amônio Quaternário/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral , Espectrometria de Massas em TandemRESUMO
RATIONALE: The identification and quantification of phytochelatins (PCs) and their derivatives are important to understand their roles in plant growth and development. A method couplling high-performance liquid chromatography with hybrid linear ion trap Orbitrap mass spectrometry (HPLC-LTQ/Orbitrap) was developed to screen PCs that have the same characteristic product ions. This approach was used for the fragmentation pattern analysis of glutathione (GSH) and PC standards, which allowed identification of the fragmentation pathways of their derivatives isolated from rice roots, stems and leaves. METHODS: In this study, we developed a method to detect and identify PCs and their derivatives in rice based on HPLC/LTQ-Orbitrap. Spectrum interpretation and MS/MS fragmentation patterns of PCs provide sufficient information to discover the novel PC derivatives. This approach includes precursor ion scan and product ion scan to detect and character the novel PC derivatives. RESULTS: Based on HCD-MS/MS fragmentation patterns, four PCs and 18 PC derivatives were identified. Among them, seven PC derivatives, i.e., iso-PC2 (Asn), iso-PC3 (Asn), iso-PC2 (Cys), des-γGlu-iso-PC3 (Ser), des-Cys-iso-PC2 (Glu), des-Cys-iso-PC3 (Glu) and des-Cys-iso-PC4 (Glu), have not been previously reported. This method was validated by profiling GSH, PCs and PC derivatives in rice. Preliminary results revealed that PCs and their derivatives, except GSH, are markedly induced by Cd treatment. CONCLUSIONS: The HPLC/LTQ-Orbitrap method was successfully developed for the identification of PCs and their derivatives. The C-terminal linked to Gly is replaced with Glu, Ser, Asn, Gln or Cys, thereby creating a family of chemicals that share several structural properties. This technique could be particularly useful for investigators studying plant metabolomics. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Cádmio/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Oryza/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Biodegradação Ambiental , Oryza/efeitos dos fármacos , Oryza/metabolismoRESUMO
Copper (Cu) is an essential micronutrient for humans, but excessive Cu in rice grains causes health risks. Currently, the mechanisms underlying Cu accumulation in rice are unclear. Here, we identified a novel member of the high-affinity copper transporter (Ctr)-like (COPT) protein family in rice, OsCOPT7, which controls Cu accumulation in rice grains. Mutation in the coding sequence of OsCOPT7 (mutant lc1) leads to inhibition of Cu transport through the xylem, contributing to lower Cu concentrations in the grain of lc1. Knockout or modulation of the expression of OsCOPT7 significantly impacts Cu transportation in the xylem and its accumulation in rice grains. OsCOPT7 localizes at the multi-pass membrane in the cell and the gene is expressed in the exodermis and stele cells, facilitating Cu loading into the xylem. OsCOPT7 expression is upregulated under Cu deficiency and in various organs, implying its contribution to Cu distribution within the rice plant. The variable expression pattern of OsCOPT7 suggests that OsCOPT7 expression responds to Cu stress in rice. Moreover, assays reveal that OsCOPT7 expression level is suppressed by the SQUAMOSA promoter-binding protein-like 9 (OsSPL9) and that OsCOPT7 interacts with Antioxidant Protein1 (OsATX1). This study elucidates the involvement of OsCOPT7 in Cu loading into the xylem, its subsequent distribution within the rice plant, and the potential of this protein in reducing the risk of high Cu concentrations in rice grain grown on Cu-contaminated soil.
Assuntos
Cobre , Oryza , Proteínas de Plantas , Xilema , Cobre/metabolismo , Xilema/metabolismo , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Transporte BiológicoRESUMO
The widely used fungicide triadimefon (TDF) has been detected in aquatic environments, and appears to disrupt steroid homeostasis; however, the toxic effects on fish reproduction triggered by TDF via the key receptor signaling pathways remain largely unknown. The present study showed that TDF (0.069, 0.138, 0.690 mg/L) exposure not only caused disordered germ cell maturation, but also decreased spawned egg production. In order to better understand this reproductive inhibition, we investigated the effects of TDF based on quantitative PCR, Western blot and mass spectrometry methodology in zebrafish. Due to the preferential accumulation of TDF in the liver, a general pattern of up-regulation of genes involved in biotransformation pathway was observed. A significant increase in abcb4 expression appeared to be responsible for TDF excretion. TDF-induced receptors (AhR2 and PXR) changed many genes involved in steroid metabolism, and subsequent disruptions in steroid homeostasis, which might be the key biological pathway in TDF reproductive toxicity. However, due to the different metabolic demands, the transcript profiles involved in steroid metabolism in zebrafish exhibited a sex-specific expression pattern. For example, the increase in gene expression of ahr2 was accompanied by a reduction in the rate of E2 biosynthesis resulting from the diminished cyp19a1a expression, and in turn led to down-regulation of esr1 and vtg1 in the liver, supporting the anti-estrogenic effect of TDF in male fish. In contrast, the increase in E2 production was accompanied by an increase in Esr1 protein expression caused by TDF and paralleled the increase in ahrr1 expression, suggesting that TDF may induce estrogenic activity through AhR-ER interactions in females. In addition, over-induction of cyp3a65 activity mediated through pxr, which helped to accelerate the transformation from TDF to triadimenol in the liver, appeared to elevate T metabolite rate in females. The down-regulation of fshß transcript in males further suggested that TDF might adversely affect normal gametogenesis and induce reproductive toxicity.
Assuntos
Poluentes Químicos da Água , Proteínas de Peixe-Zebra , Animais , Biotransformação , Feminino , Masculino , Triazóis , Peixe-ZebraRESUMO
Allergen Glb33 is an important allergen in rice that can cause allergic reactions such as asthma and atopic dermatitis. However, knowledge of the content in rice is sparse. In the present work, an absolute protein quantification method was established for allergen Glb33 in rice samples using liquid chromatography-tandem mass spectrometry. After extraction of allergen Glb33 from rice grains using salt solution, the isotope-labeled peptide internal standard was added to the extract, followed by enzymatic digestion with trypsin. The signature peptide and its isotope-labeled analogue from the tryptic hydrolysates of allergen Glb33 and the internal standard were detected by liquid chromatography-tandem mass spectrometry. The quantitative bias caused by tryptic efficiency and matrix effect was corrected by using two isotope-labeled standard peptides. The method exhibited good linearity in the range of 1-200 nM, with coefficients of determination of R2 > 0.998. A high sensitivity was observed, with a limit of quantification of 0.97 nM. Mean recoveries obtained from different rice matrices ranged from 82.7%-98.1% with precision <8.5% in intraday trials ( n = 6), while mean recoveries were from 75.1%-107.4% with precision <14.6% in interday trials ( n = 14). The developed method was successfully applied to the analysis of allergen Glb33 in 24 different rice cultivars.
Assuntos
Alérgenos/química , Cromatografia Líquida/métodos , Oryza/química , Peptídeos/química , Proteínas de Plantas/química , Espectrometria de Massas em Tandem/métodos , Alérgenos/imunologia , Isótopos de Carbono/análise , Marcação por Isótopo , Isótopos de Nitrogênio/análise , Oryza/imunologia , Peptídeos/imunologia , Proteínas de Plantas/imunologia , Sementes/química , Sementes/imunologiaRESUMO
A method was developed for the simultaneous determination of 15 phenylurea herbicides (fenuron, tebuthiuron, metoxuron, monuron, chlortoluron, fluometuron, isoproturon, diuron, monolinuron, metobromuron, buturon, siduron, linuron, chlorbromuron, and neburon) in rice and corn samples by HPLC with fluorescence detection combined with UV decomposition and post-column derivatization. After extraction with acetonitrile and evaporation, the herbicides were redissolved in n-hexane and purified on a Florisil solid-phase extraction column. HPLC separation was carried out on a C18 column with water-acetonitrile gradient elution. UV decomposition was carried out under a 254-nm UV lamp. The method was evaluated in terms of the limits of detection and quantification. The linearity was satisfactory, with a correlation coefficient of >0.9980. Precision and recovery studies were evaluated at three concentration levels for each matrix. Good precision was obtained, with relative standard deviation in the range 1.5-9.6% for spiked rice samples and 0.9-9.9% for spiked corn samples. Recovery (n=6) ranged between 75.3% and 104.3% for rice and between 75.0% and 105.1% for corn. The intra-day precision (n=5) for the 15 herbicides in rice and corn samples spiked at an intermediate level was between 1.5% and 7.1%, and the inter-day precision over 10 days (n=10) was between 6.4% and 15.6%.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Herbicidas/análise , Oryza/química , Compostos de Fenilureia/análise , Zea mays/química , Herbicidas/isolamento & purificação , Modelos Lineares , Compostos de Fenilureia/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida , Espectrometria de Fluorescência , Raios Ultravioleta , o-Ftalaldeído/metabolismoRESUMO
Sulfur (S) fertilizer application in rice (Oryza sativa L.) is crucial in determining rice grain productivity and quality. However, little information is available concerning the effect of S supply on cadmium (Cd) uptake and translocation in rice. In this study, both hydroponic and soil experiments were conducted to investigate the influence of S supply on Cd accumulation in rice under two Cd levels (0 and 50⯵M), combined with three S concentrations (0, 2.64 and 5.28â¯mM). The moderate and excessive S supply (2.64 and 5.28â¯mM) tended to increase plant growth, root length, root and shoot dry weights of rice seedlings, and significantly decreased Cd concentrations in rice plants and grains in the absence or presence of Cd. The subcellular distribution and chemical forms of Cd in roots and shoots also varied with S supply levels. The decreased Cd uptake and translocation in rice grains could be ascribed to the enhanced formation of iron (Fe) plaque on the root surfaces and increased Cd chelation and vacuolar sequestration in roots, since Fe, Mn concentrations in Fe plaque, glutathione and phytochelatins contents, as well as phytochelatin synthase (OsPCS) and tonoplast heavy metal ATPase (OsHMA3) expressions in roots significantly increased with increased S supply. This work provides more insight into the mechanisms of Cd uptake and translocation in rice, and will be helpful for developing strategies to reduce rice grain Cd through S fertilizer application in Cd-contaminated soil.
Assuntos
Cádmio/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plântula/metabolismo , Poluentes do Solo/metabolismo , Enxofre/farmacologia , Adenosina Trifosfatases/metabolismo , Aminoaciltransferases/metabolismo , Transporte Biológico/efeitos dos fármacos , Cádmio/análise , Grão Comestível/química , Fertilizantes/análise , Glutationa/metabolismo , Ferro/análise , Oryza/crescimento & desenvolvimento , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise , Enxofre/análiseRESUMO
Coconut contains many uncharacterized cytokinins that have important physiological effects in plants and humans. In this work, a method based on liquid chromatography-tandem mass spectrometry was developed for identification and quantification of six cytokinin nucleotide monophosphates in coconut flesh. Excellent separation was achieved using a low-coverage C18 bonded-phase column with an acidic mobile phase, which greatly improved the retention of target compounds. To enable high-throughput analysis, a single-step solid-phase extraction using mixed-mode anion-exchange cartridges was employed for sample preparation. This proved to be an effective method to minimize matrix effects and ensure high selectivity. The limits of detection varied from 0.06 to 0.3 ng/mL, and the limits of quantification ranged from 0.2 to 1.0 ng/mL. The linearity was statistically verified over 2 orders of magnitude, giving a coefficient of determination (R2) greater than 0.9981. The mean recoveries were from 81 to 108%; the intraday precision (n = 6) was less than 11%; and the interday precision (n = 11) was within 14%. The developed method was applied to the determination of cytokinin nucleotide monophosphates in coconut flesh samples, and four of them were successfully identified and quantified. The results showed that trans-zeatin riboside-5'-monophosphate was the dominant cytokinin, with a concentration of 2.7-34.2 ng/g, followed by N6-isopentenyladenosine-5'-monophosphate (≤12.9 ng/g), while the concentrations of cis-zeatin riboside-5'-monophosphate and dihydrozeatin riboside-5'-monophosphate were less than 2.2 and 4.9 ng/g, respectively.
Assuntos
Cromatografia de Fase Reversa/métodos , Cocos/química , Citocininas/química , Frutas/química , Nucleotídeos/química , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Citocininas/isolamento & purificação , Nucleotídeos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Extração em Fase SólidaRESUMO
Ustiloxins are cyclopeptide mycotoxins produced by the pathogenic fungus Ustilaginoidea virens of rice false smut. Quantification of ustiloxins is essential to assess the food safety of rice infected by rice false smut disease. This paper describes a sensitive method for the simultaneous quantification of ustiloxins A, B, C, D and F in rice grains using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since notable matrix enhancement effects (21%-78%) occurred for all of the target analytes (except for ustiloxin A), several solid phase extraction materials were tested for their ability to retain ustiloxins from aqueous solutions prior to the LC-MS/MS analysis, including C18 sorbents, polymer anion exchange sorbents resin (PAX), and polymer cation exchange resin (PCX). The PCX resin was adopted due to its higher extraction capability and selectivity for all targets compared to others, and in this case, almost no matrix effects (-5% to 8%) were observed for all of the ustiloxins monitored. The developed method reached limits of quantification of 0.2-2ngg-1, and linearity was statistically verified over two orders of magnitude with regression coefficients (R2)>0.991. The mean recoveries were from 85% to 109%, and the inter-day precisions (n=11) were less than 16%, with intra-day precisions (n=6) within 12%. Analysis of samples showed that ustiloxin A was the dominant species, with the content ranging from 5.5 to 273.8ngg-1, followed by ustiloxin B (≤88.7ngg-1), while concentrations of ustiloxins C, D and F were slightly lower (≤43.2ngg-1). To our knowledge, this is the first report on the determination and analysis of five ustiloxins simultaneously in a single analysis.
Assuntos
Resinas de Troca de Cátion , Cromatografia Líquida de Alta Pressão , Micotoxinas/análise , Oryza/microbiologia , Peptídeos Cíclicos/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Hypocreales/química , Micotoxinas/química , Micotoxinas/isolamento & purificação , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , PolímerosRESUMO
A high-throughput method was developed using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for the profiling and quantification of 43 phytohormones and their major metabolites, including auxins, abscisic acid, jasmonic acid, salicylic acid, cytokinins and gibberellins in a single sample extract. Considerable matrix effects (MEs) were observed (with most ME values in the range of 29%-84%, but maximum MEs of more than 115%, even up to 206%, existed) in sample extracts for most of the compounds studied. The application of the proposed binary solid-phase extraction using polymer anion and polymer cation exchange resins, was performed to purify 25 acidic and 18 alkaline phytohormones and their major metabolites prior to the LC-MS/MS analysis, which markedly reduced the MEs to acceptable levels, with ME values in the range of ±15%. Moreover, all of the isomers of cytokinins and their metabolites were fully separated on a sub-2µm particle C18 reverse-phase column with the optimized mobile phase consisting of methanol and 5mM ammonium formate. The method showed good linearity for all 43 analytes with regression coefficients (R(2))>0.991. Limits of detection ranged from 0.19 to 7.57 fmol for auxin, gibberellins, abscisic acid and their metabolites, 29.7 fmol for jasmonic acid, 18.1 fmol for salicylic acid, and from 0.03 to 0.31 fmol for cytokinins and their metabolites. The mean recoveries for all of the analytes were from 70.7 to 118.5%, and the inter-day precisions (n=6) were less than 18.7%, with intra-day precisions (n=6) within 25.4%. Finally, 20 compounds were successfully quantified in rice sample profiles using the proposed method, which will greatly facilitate the understanding of hormone-related regulatory networks that influence rice growth and development. To our knowledge, there are limited reports that measure this level of phytohormone species in rice samples using a single analysis.
Assuntos
Cromatografia Líquida/métodos , Oryza/química , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Abscísico/análise , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Ciclopentanos/análise , Ciclopentanos/química , Ciclopentanos/metabolismo , Citocininas/análise , Citocininas/química , Citocininas/metabolismo , Giberelinas/análise , Giberelinas/química , Giberelinas/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Resinas de Troca Iônica/química , Oryza/metabolismo , Oxilipinas/análise , Oxilipinas/química , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/químicaRESUMO
Analysis of biothiols is still problematic, due to their high polarity, oxidation sensitivity and time-consuming sample preparation. In this paper, a direct, rapid and sensitive method was developed for simultaneous quantification of unbound cysteine (Cys), glutathione (GSH) and phytochelatins (PCs) in rice leaf, stem and root samples by hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry (HILIC-MS/MS). Homogenized samples were extracted with water containing 50mM dithiothreitol, without derivatization and further clean-up, and the extracts were injected directly onto an Xbridge Amide-HILIC column (3.5µm, 150mm×2.1mm i.d.). The best chromatographic separation and MS sensitivity was achieved using a linear gradient elution with 10mM aqueous ammonium formate and acetonitrile as the mobile phase. In MS/MS mode the detection limit (S/N≥3) of seven biothiols was 3-105nM. Good linearities were observed (r>0.995) with linear dynamic range at least over three orders of magnitude. Recoveries for most analytes were within the range of 77-128%, with relative standard deviations less than 18.2%. The intra-day precision (n=7) was 6.1-11.7%, and the inter-day precision over 15 d (n=15) was 8.5-16.3% for all biothiols. The optimized HILIC-MS/MS method was applied to study the influence of different cadmium (Cd) concentrations (0, 1 and 50µM) on contents of Cys, GSH and PC2-6 in rice tissue. With increasing Cd concentrations in nutrient solutions, contents of PC2-4 in rice roots increased but contents of Cys and GSH decreased. Contents of PC2-4 in both rice leafs and stems increased markedly at high dose Cd (50µM) treatment compared with controls, compared with low Cd concentrations (1µM). However, both PC5 and PC6 were not detected throughout the stress experiment.
Assuntos
Cromatografia Líquida/métodos , Oryza/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cisteína/análise , Glutationa/análise , Interações Hidrofóbicas e Hidrofílicas , Fitoquelatinas/química , Raízes de Plantas/química , Caules de Planta/química , Reprodutibilidade dos TestesRESUMO
It was reported in this paper that trace mercury in rice was determined by microwave digestion-hydride generation-atomic fluorescence spectrometry. The microwave digestion of samples was used, and the optimum conditions for the digestion were developed. The relative factors of hydride generation atomic fluorescence spectrometry for the determination were tested and discussed. The temperature and the relative humidity were discussed too. The detection limit was 0.005 ng x mL(-1). Mercury in reference materials (rice flour, GBW 08508) was determined also by the described method. The result obtained was in good agreement with standard value. The relative standard deviation (RSD) was 2.1%, and the recovery of mercury in rice samples was 95.2%-106.4%.
Assuntos
Limite de Detecção , Mercúrio/análise , Micro-Ondas , Oryza/química , Espectrometria de Fluorescência/métodos , Fluorescência , Contaminação de Alimentos/análise , Controle de Qualidade , Padrões de ReferênciaRESUMO
A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm × 4.6 mm i.d., 5 µm). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 µgkg(-1) and 50 µgkg(-1), respectively, with limits of detection as low as 1.2 µgkg(-1) for glyphosate and 15 µgkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%.
Assuntos
Frutas/química , Glicina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Organofosfonatos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Verduras/química , Calibragem , Cromatografia Líquida , Monitoramento Ambiental , Glicina/análise , Glicina/metabolismo , Troca Iônica , Isoxazóis , Limite de Detecção , Padrões de Referência , Soluções , Tetrazóis , GlifosatoRESUMO
A method was developed for the simultaneous determination of 10 triazine herbicides (cyanazine, simazine, simetryn, metribuzin, atrazine, ametryn, terbuthylazine, prometryn, terbutryn, and dimethametryn) in rice samples by high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer. After extraction with acetonitrile and evaporation, the herbicides were redissolved in n-hexane and purified on a Florisil solid-phase extraction column. All compounds were separated within 12 min, producing more than 11 data points for each herbicide and high mass accuracy quantified ions which the mass errors of absolute value were less than 1.9 ppm in pure solution and 2.1 ppm in the matrix-matched standards solution. The method was validated in terms of the limits of detection and the limits of quantification. The linearity was satisfactory, with a correlation coefficient of >0.9975. Precision and recovery studies were evaluated at three concentration levels for Japonica, Indica, and Glutinous rice matrix. The mean recoveries obtained for all analytes in spiked Xiushui 03, Liangyoupeijiu, and Taihunuo rice samples were 83.3-99.0%, 82.0-99.7%, and 84.2-99.4%, respectively, with relative standard deviation in range 1.7-10.6%, 1.2-10.7%, and 1.9-11.6% for spiked rice samples, respectively. The intra-day precision (n=5) for the 10 herbicides in rice samples spiked at an intermediate level was between 2.8% and 7.9%, and the inter-day precision over 10 days (n=10) was between 5.5% and 15.9%.