Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
IEEE Sens J ; 24(1): 741-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38344259

RESUMO

Chronic wounds have emerged as a significant healthcare burden, affecting millions of patients worldwide and presenting a substantial challenge to healthcare systems. The diagnosis and management of chronic wounds are notably intricate, with inappropriate management contributing significantly to the amputation of limbs. In this work, we propose a compact, wireless, battery-free, and multimodal wound monitoring system to facilitate timely and effective wound treatment. The design of this monitoring system draws on the principles of higher-order parity-time symmetry, which incorporates spatially balanced gain, neutral, and loss, embodied by an active -RLC reader, an LC intermediator, and a passive RLC sensor, respectively. Our experimental results demonstrate that this wireless wound sensor can detect temperature (T), relative humidity (RH), pressure (P), and pH with exceptional sensitivity and robustness, which are critical biomarkers for assessing wound healing status. Our in vitro experiments further validate the reliable sensing performance of the wound sensor on human skin and fish. This multifunctional monitoring system may provide a promising solution for the development of futuristic wearable sensors and integrated biomedical microsystems.

2.
Opt Express ; 31(18): 29515-29522, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710750

RESUMO

An all-dielectric photonic metastructure is investigated for application as a quantum algorithm emulator (QAE) in the terahertz frequency regime; specifically, we show implementation of the Deustsh-Josza algorithm. The design for the QAE consists of a gradient-index (GRIN) lens as the Fourier transform subblock and patterned silicon as the oracle subblock. First, we detail optimization of the GRIN lens through numerical analysis. Then, we employed inverse design through a machine learning approach to further optimize the structural geometry. Through this optimization, we enhance the interaction of the incident light with the metamaterial via spectral improvements of the outgoing wave.

3.
Proc Natl Acad Sci U S A ; 117(31): 18292-18301, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661158

RESUMO

Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil-paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil-paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.


Assuntos
Eletrônica/instrumentação , Grafite , Monitorização Fisiológica/instrumentação , Pele , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletrodos , Desenho de Equipamento , Humanos , Papel
4.
Opt Express ; 30(16): 28966-28983, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299082

RESUMO

An original liquid crystal (LC)-based substrate integrated waveguide (SIW) leaky-wave antenna is proposed. Inside the SIW, there is an embedded stripline sandwiched between an LC pool and another dielectric slab. The antenna couples the guided quasi-TEM mode into free space through a periodic set of complementary electric inductive-capacitive (cELC) resonators. Simulation results show that the antenna performs fixed-frequency continuous beam steering of 52° from backward -28° to forward 24° at 25.85 GHz. This relatively wide beam scan angle is achieved by tuning the LC permittivity through an applied quasi-DC bias voltage to the stripline. Simulation results show that the antenna has high realized gain through the entire scanning range (less than 1 dB degradation), relatively wide bandwidth, and good tolerance to frequency drift and fabrication errors.

5.
Opt Express ; 29(8): 12330-12343, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984995

RESUMO

Spectral singularities appearing in parity-time (PT)-symmetric non-Hermitian optical systems have aroused a growing interest due to their new exhilarating applications, such as bifurcation effects at exceptional points and the coexistence of coherent perfect absorber and laser (so-called CPAL point). We introduce here how the concept of CPAL action provoked in PT-symmetric metasurfaces can be translated into practical implementation of a low-loss zero/low-index open channel supporting a nearly undamped fast-wave propagation. Such a PT-synthetic metachannel shows the capability to produce a high-directivity leaky radiation, with a tunable beam angle that depends on the gain-loss parameter. The proposed structure may enable new kinds of super-directivity antennas, as well as many applications that demand extreme dielectric properties, such as epsilon-near-zero (ENZ).

6.
Nature ; 511(7507): 65-9, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990746

RESUMO

Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

7.
Opt Express ; 27(7): 9481-9494, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045099

RESUMO

Photomixers at THz frequencies offer an attractive solution to fill the THz gap; however, conventional photomixer designs result in low output powers, on the order of microwatts, before thermal failure. We propose an alternative photomixer design capable of orders of magnitude enhancement of continuous-wave THz generation using a metamaterial approach. By forming a metal-semiconductor-metal (MSM) cavity through layering an ultrafast semiconductor material between subwavelength metal-dielectric gratings, tailored resonance can achieve ultrathin absorbing regions and efficient heat sinking. When mounted to a tunable E-patch antenna, gratings also act as vertically biased electrodes, further enhancing photoconductive gain by reducing the carrier path length to nanoscales. Thus, through these multiplicative enhancements, the metamaterial-enhanced photomixer is projected to generate THz powers in the milliwatt range and exceed the Manley-Rowe limit for frequencies less than 2 THz.

8.
Nanotechnology ; 26(16): 164002, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25824491

RESUMO

We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded high-permittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

9.
Nanotechnology ; 26(41): 415201, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26403614

RESUMO

The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.


Assuntos
Luz , Nanotecnologia , Processos Fotoquímicos , Dispositivo de Identificação por Radiofrequência , Espalhamento de Radiação , Técnicas Biossensoriais , Fenômenos Eletromagnéticos , Ouro/química , Teoria Quântica , Ondas de Rádio , Prata/química
10.
Nat Nanotechnol ; 19(8): 1158-1167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38684805

RESUMO

Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers-with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.


Assuntos
Condutividade Elétrica , Nanocompostos , Prata , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Nanocompostos/química , Porosidade , Prata/química , Humanos , Nanofios/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Polímeros/química , Suor/química
11.
Phys Rev Lett ; 111(23): 233001, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476265

RESUMO

We introduce the concept and practical design of broadband, ultrathin cloaks based on non-Foster, negatively capacitive metasurfaces. By using properly tailored, active frequency-selective screens conformal to an object, within the realm of a practical realization, we show that it is possible to drastically reduce the scattering over a wide frequency range in the microwave regime, orders of magnitude broader than any available passive cloaking technology. The proposed active cloak may impact not only invisibility and camouflaging, but also practical antenna and sensing applications.

12.
Nanotechnology ; 24(45): 455202, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24129387

RESUMO

We propose the concept of a graphene-based nanoantenna-enhanced photomixer to realize wideband-tunable terahertz (THz) frequency generation. When two laser beams are focused on the graphene nanoemitter of a planar field-emission diode, THz current oscillations can be created at the emitter tip through the optical heterodyne. Graphene's optical transparency allows suitably designed plasmonic nanoantennas to boost the mixing of laser radiation at the emitter tip, significantly increasing the overall produced photomixing current. The THz wave generated at the graphene emitter is then coupled to a loading circuit, thanks to the THz wave confinement in the graphene nanostructures. Our design is ideally suited for THz sources that may be tuned from DC to 10 THz by simply shifting the frequency offset of two pumping lasers.

13.
Nat Commun ; 14(1): 1145, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854673

RESUMO

The spectral sensitivity near exceptional points (EPs) has been recently explored as an avenue for building sensors with enhanced sensitivity. However, to date, it is not clear whether this class of sensors does indeed outperform traditional sensors in terms of signal-to-noise ratio. In this work, we investigate the spectral sensitivity associated with EPs under a different lens and propose to utilize it as a resource for hardware security. In particular, we introduce a physically unclonable function (PUF) based on analogue electronic circuits that benefit from the drastic eigenvalues bifurcation near a divergent exceptional point to enhance the stochastic entropy caused by inherent parameter fluctuations in electronic components. This in turn results in a perfect entropy source for the generation of encryption keys encoded in analog electrical signals. This lightweight and robust analog-PUF structure may lead to a variety of unforeseen securities and anti-counterfeiting applications in radio-frequency fingerprinting and wireless communications.

14.
Micromachines (Basel) ; 14(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36985010

RESUMO

In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.

15.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258145

RESUMO

The intersection of biomedicine and radio frequency (RF) engineering has fundamentally transformed self-health monitoring by leveraging soft and wearable electronic devices. This paradigm shift presents a critical challenge, requiring these devices and systems to possess exceptional flexibility, biocompatibility, and functionality. To meet these requirements, traditional electronic systems, such as sensors and antennas made from rigid and bulky materials, must be adapted through material science and schematic design. Notably, in recent years, extensive research efforts have focused on this field, and this review article will concentrate on recent advancements. We will explore the traditional/emerging materials for highly flexible and electrically efficient wearable electronics, followed by systematic designs for improved functionality and performance. Additionally, we will briefly overview several remarkable applications of wearable electronics in biomedical sensing. Finally, we provide an outlook on potential future directions in this developing area.

16.
Sci Adv ; 9(36): eadg7481, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682993

RESUMO

Physically unclonable functions (PUFs) are a class of hardware-specific security primitives based on secret keys extracted from integrated circuits, which can protect important information against cyberattacks and reverse engineering. Here, we put forward an emerging type of PUF in the electromagnetic domain by virtue of the self-dual absorber-emitter singularity that uniquely exists in the non-Hermitian parity-time (PT)-symmetric structures. At this self-dual singular point, the reconfigurable emissive and absorptive properties with order-of-magnitude differences in scattered power can respond sensitively to admittance or phase perturbations caused by, for example, manufacturing imperfectness. Consequently, the entropy sourced from inevitable manufacturing variations can be amplified, yielding excellent PUF security metrics in terms of randomness and uniqueness. We show that this electromagnetic PUF can be robust against machine learning-assisted attacks based on the Fourier regression and generative adversarial network. Moreover, the proposed PUF concept is wavelength-scalable in radio frequency, terahertz, infrared, and optical systems, paving a promising avenue toward applications of cryptography and encryption.

17.
IEEE J Radio Freq Identif ; 7: 118-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546171

RESUMO

Radio frequency identification (RFID) has gained significant attention because it provides a highly versatile platform for identifying, tracking, and monitoring objects. An emerging trend in this technology is the use of nonlinear RFID, such as passive harmonic tags, which have been demonstrated to be effective against clutters, echoes, crosstalk, and other electromagnetic interferences. This article presents a comprehensive review of recent advances and applications of passive harmonic RFIDs and integrated systems. A passive harmonic RFID exploits the frequency orthogonality of the transmitted (fundamental tone) and received (harmonics) radio-frequency (RF) signals to enable robust interrogation in noisy and cluttered environments, not possible with traditional passive linear RFIDs. This review article evaluates passive harmonic RFID systems in comparison to traditional systems and highlights their pros and cons. Several state-of-the-art chipless and chip-based harmonic RFIDs are presented, and their novel applications in identification, tracking, sensing, and biotelemetry are discussed. The review summarizes the key successes and challenges of passive harmonic RFID systems and provides insights into their future development, implementation, and optimization.

18.
Sci Rep ; 13(1): 16957, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805642

RESUMO

This paper studies the feasibility of a deep neural network (DNN) approach for bone fracture diagnosis based on the non-invasive propagation of radio frequency waves. In contrast to previous "semi-automated" techniques, where X-ray images were used as the network input, in this work, we use S-parameters profiles for DNN training to avoid labeling and data collection problems. Our designed network can simultaneously classify different complex fracture types (normal, transverse, oblique, and comminuted) and estimate the length of the cracks. The proposed system can be used as a portable device in ambulances, retirement houses, and low-income settings for fast preliminary diagnosis in emergency locations when expert radiologists are not available. Using accurate modeling of the human body as well as changing tissue diameters to emulate various anatomical regions, we have created our datasets. Our numerical results show that our design DNN is successfully trained without overfitting. Finally, for the validation of the numerical results, different sets of experiments have been done on the sheep femur bones covered by the liquid phantom. Experimental results demonstrate that fracture types can be correctly classified without using potentially harmful and ionizing X-rays.


Assuntos
Fraturas Ósseas , Micro-Ondas , Humanos , Animais , Ovinos , Redes Neurais de Computação , Fraturas Ósseas/diagnóstico por imagem , Radiografia , Osso e Ossos
19.
Phys Rev Lett ; 108(26): 263905, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23004982

RESUMO

Here we extend the reach of Fano resonant coupling by combining this concept with cloaking and plasmonic resonances in a single nonlinear nanoparticle, in order to realize giant all-optical scattering nanoswitches controlled by moderate pumping intensities. We show that a core-shell nonlinear plasmonic particle may be designed to abruptly switch from being completely cloaked to being strongly resonant, with up to a 40 dB cross-sectional difference. Self-tunable optical cloaks and resonant scatterers are envisioned for use as efficient all-optical switches and nanomemories.

20.
Nano Lett ; 11(12): 5514-8, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22087878

RESUMO

We investigate the use of nonlinear metasurfaces formed by plasmonic nanoantennas loaded with χ(3) nonlinear elements, in order to realize subwavelength imaging based on phase conjugation and time reversal. The nanoantennas' plasmonic resonance is used to boost the nonlinear response over an ultrathin surface, meeting the conditions for efficient phase conjugation necessary for imaging applications. Pairing two such surfaces, we put forward a realistic design for a time-reversal 'perfect lens', which can overcome the limitations in resolution and sensitivity to losses typical of negative-index lenses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa