Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 955, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064336

RESUMO

Lipid metabolism has a profound impact on gastric cancer (GC) progression and is a newly targetable vulnerability for cancer therapy. Given the importance of lipids in cancer cellular processes, in this study we employed lipidomic clinical and transcriptomic data to connect the variations of lipid metabolism changes of GC. We constructed a clinical nomogram based on the lipid factors and other clinical items. Then by using multi-omics techniques, we established a lipid-related gene signature for individualized prognosis prediction in patients with GC. Moreover, a total of 1357 GC cases were then applied to evaluate the robustness of this model. WGCNA was used to identify co-expression modules and enriched genes associated with GC lipid metabolism. The role of key genes ACLY in GC was further investigated. The prognostic value of the lipgenesis signature was analyzed using Cox regression model, and clinical nomogram was established. Among them, we observed overexpression of ACLY significantly increased the levels of intracellular free fatty acid and triglyceride, and activated AKT/mTOR pathway to promote cancer development. In conclusion, our findings revealed that GC exhibited a reprogramming of lipid metabolism in association with an altered expression of associated genes. Among them, ACLY significantly promoted GC lipid metabolism and increased cancer cell proliferation, suggesting that this pathway can be targetable as a metabolic vulnerability in future GC therapy.


Assuntos
Neoplasias Gástricas , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transcriptoma
2.
Ecotoxicol Environ Saf ; 241: 113807, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772361

RESUMO

Urban plants are regarded as an effective agent to control particulate matter (PM) pollution by absorbing PM. Repeated PM and drought stress in urban areas often cause morphological and physiological damage to plants, resulting in lower ecological benefits. Nevertheless, knowledge in PM retention capability, morphology and physiology of plants under repeated stress and cross stress has been barely available. In order to investigate changes in these aspects under repeated stress, we applied periodic drought with severe exhaust exposure on Photinia × fraseri Dress (a common urban tree species with strong PM retention ability). The study was carried out in a six-period scenario, with a duration of 10 days for each period: initial value (R0), initial stress period (S1), initial recovery period (R1) second stress period (S2), second recovery period (R2) and final stress period (S3). The results are as follows: In terms of periodic factor, PM retention of tail gas stress group (P) and cross stress group (PD) in S2 decreased by 10.00 µg/cm2 and 12.60 µg/cm2 respectively compared with those during S1 (p > 0.05). During S3, the total amount of PM on leaf surface in both P and PD demonstrated a significant decrease (p < 0.05). The retention capacity of P. fraseri may be dramatically limited under multi-period stress. In this experiment, we attribute the decrease of PM retention to the morphological changes (shedding of mature leaves, smaller leaf area and thinner wax layer) and physiological responses (an increase in gas exchange) under multi-period stress. In terms of cross-stress factor, the total retained PM on leaf surface in PD was higher than that in P, especially during S3, and the interaction between drought and PM reached a significant level (p < 0.01, η2 = 0.808), which indicated that drought reduced the loss of dust under PM stress. Changes in morphology and gas exchange indicated that the mechanisms for the high dust retention rate on the leaf surface of PD group varied in the three stress periods. In addition, except the chlorophyll relative value, the alleviated accumulation of MDA and intense production of soluble sugar with PD showed favorable responses to disturbance compared with those in P under the repeated stress. Therefore, we infer that, under multi-period stress of drought and tail gas, P. fraseri may better maintain PM retention ability and resistance than under single stress.


Assuntos
Poluentes Atmosféricos , Photinia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Secas , Poeira , Material Particulado/análise , Material Particulado/toxicidade , Folhas de Planta/química , Plantas , Emissões de Veículos/toxicidade
3.
Cancer Cell Int ; 21(1): 698, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930261

RESUMO

BACKGROUND: Pancreatic cancer is one of the most common malignancies worldwide. In recent years, specific metabolic activities, which involves the development of tumor, caused wide public concern. In this study, we wish to explore the correlation between metabolism and progression of tumor. METHODS: A retrospective analysis including 95 patients with pancreatic ductal adenocarcinoma (PDAC) and PDAC patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and The Gene Expression Omnibus (GEO) database were involved in our study. Multivariate Cox regression analysis was used to construct the prognosis model. The potential connection between metabolism and immunity of PDAC was investigated through a weighted gene co-expression network analysis (WGCNA). 22 types of Tumor-infiltrating immune cells (TIICs) between high-risk and low-risk groups were estimated through CIBERSORT. Moreover, the potential immune-related signaling pathways between high-risk and low-risk groups were explored through the gene set enrichment analysis (GSEA). The role of key gene GMPS in developing pancreatic tumor was further investigated through CCK-8, colony-information, and Transwell. RESULTS: The prognostic value of the MetS factors was analyzed using the Cox regression model, and a clinical MetS-based nomogram was established. Then, we established a metabolism-related signature to predict the prognosis of PDAC patients based on the TCGA databases and was validated in the ICGC database and the GEO database to find the distinct molecular mechanism of MetS genes in PDAC. The result of WGCNA showed that the blue module was associated with risk score, and genes in the blue module were found to be enriched in the immune-related signaling pathway. Furthermore, the result of CIBERSORT demonstrated that proportions of T cells CD8, T cells Regulatory, Tregs NK cells Activated, Dendritic cells Activated, and Mast cells Resting were different between high-risk and low-risk groups. These differences are potential causes of different prognoses of PDAC patients. GSEA and the protein-protein interaction network (PPI) further revealed that our metabolism-related signature was significantly enriched in immune-related biological processes. Moreover, knockdown of GMPS in PDAC cells suppressed proliferation, migration, and invasion of tumor cells, whereas overexpression of GMPS performed oppositely. CONCLUSION: The results shine light on fundamental mechanisms of metabolic genes on PDAC and establish a reliable and referable signature to evaluate the prognosis of PDAC. GMPS was identified as a potential candidate oncogene with in PDAC, which can be a novel biomarker and therapeutic target for PDAC treatment.

4.
J Therm Biol ; 99: 103019, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420644

RESUMO

Heat stress is a widespread phenomenon in domestic animal feeding in tropical and sub-tropical areas that are subjected to a growing negative effect in livestock and poultry due to global warming. It leads to reduced food intake, retarded growth, intestinal disequilibrium, lower reproductive performance, immunity and endocrine disorders in livestock and poultry. Many studies show that the pathogenesis of heat stress is mainly related to oxidative stress, hormone secretion disorder, cytokine imbalance, cell apoptosis, cell autophagy, and abnormal cell function. Its mechanism refers to activation of mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) signaling pathway, the fluctuation of tight junction protein and heat shock protein expression, and protein epigenetic modification. This manuscript reviews the mechanism of heat stress through an insight into the digestive, reproductive, immune, and endocrine system. Lastly, the progress in prevention and control techniques of heat stress has been summarized.


Assuntos
Resposta ao Choque Térmico , Gado/metabolismo , Aves Domésticas/metabolismo , Criação de Animais Domésticos , Animais , Sistema Digestório/metabolismo , Sistema Endócrino/metabolismo , Reprodução
5.
Comput Struct Biotechnol J ; 24: 322-333, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38690549

RESUMO

Data curation for a hospital-based cancer registry heavily relies on the labor-intensive manual abstraction process by cancer registrars to identify cancer-related information from free-text electronic health records. To streamline this process, a natural language processing system incorporating a hybrid of deep learning-based and rule-based approaches for identifying lung cancer registry-related concepts, along with a symbolic expert system that generates registry coding based on weighted rules, was developed. The system is integrated with the hospital information system at a medical center to provide cancer registrars with a patient journey visualization platform. The embedded system offers a comprehensive view of patient reports annotated with significant registry concepts to facilitate the manual coding process and elevate overall quality. Extensive evaluations, including comparisons with state-of-the-art methods, were conducted using a lung cancer dataset comprising 1428 patients from the medical center. The experimental results illustrate the effectiveness of the developed system, consistently achieving F1-scores of 0.85 and 1.00 across 30 coding items. Registrar feedback highlights the system's reliability as a tool for assisting and auditing the abstraction. By presenting key registry items along the timeline of a patient's reports with accurate code predictions, the system improves the quality of registrar outcomes and reduces the labor resources and time required for data abstraction. Our study highlights advancements in cancer registry coding practices, demonstrating that the proposed hybrid weighted neural-symbolic cancer registry system is reliable and efficient for assisting cancer registrars in the coding workflow and contributing to clinical outcomes.

6.
Chemosphere ; 338: 139612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482312

RESUMO

The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.


Assuntos
Cisteína , Metais Pesados , Goma Arábica , Cádmio , Chumbo , Metais Pesados/análise , Extratos Vegetais , Medição de Risco
7.
Carbohydr Polym ; 299: 120179, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876794

RESUMO

The mechanism underlying the intestinal transport of COS is not well understood. Here, transcriptome and proteome analyses were performed to identify potential critical molecules involved in COS transport. Enrichment analyses revealed that the differentially expressed genes in the duodenum of the COS-treated mice were mainly enriched in transmembrane and immune function. In particular, B2 m, Itgb2, and Slc9a1 were upregulated. The Slc9a1 inhibitor decreased the transport efficiency of COS both in MODE-K cells (in vitro) and in mice (in vivo). The transport of FITC-COS in Slc9a1-overexpressing MODE-K cells was significantly higher than that in empty vector-transfected cells (P < 0.01). Molecular docking analysis revealed the possibility of stable binding between COS and Slc9a1 through hydrogen bonding. This finding indicates that Slc9a1 plays a crucial role in COS transport in mice. This provides valuable insights for improving the absorption efficiency of COS as a drug adjuvant.


Assuntos
Transporte Biológico , Quitosana , Mucosa Intestinal , Trocador 1 de Sódio-Hidrogênio , Animais , Camundongos , Mucosa Intestinal/metabolismo , Simulação de Acoplamento Molecular , Oligossacarídeos , Trocador 1 de Sódio-Hidrogênio/metabolismo
9.
Carbohydr Polym ; 321: 121279, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739521

RESUMO

Heat stress (HS) has a negative impact on animal health. A modified chitosan-gentamicin conjugate (CS-GT) was prepared to investigate its potential protective effects and mechanism of action on heat stress-induced intestinal mucosa injury in IPEC-J2 cells and mouse 3D intestinal organs in a mouse model. CS-GT significantly (P < 0.01) reversed the decline in transmembrane resistance and increased the FITC-dextran permeability of the IPEC-J2 monolayer fusion epithelium caused by heat stress. Heat stress decreased the expression of the tight binding proteins occludin, claudin1, and claudin2. However, pretreatment with CS-GT significantly increased (P < 0.01) the expression of these tight binding proteins. Mechanistically, CS-GT inhibited the activation of the TLR4/STAT6/MYLK signaling pathway induced by heat stress. Molecular docking showed that CS-GT can bind effectively with TLR4. In conclusion, CS-GT alleviates heat stress-induced intestinal mucosal damage both in vitro and in vivo. This effect is mediated, at least partly, by the inhibition of the TLR4/STAT6/MYLK signaling pathway and upregulation of tight junction proteins. These findings suggest that CS-GT may have therapeutic potential in the prevention and treatment of heat stress-related intestinal injury.


Assuntos
Queimaduras , Quitosana , Animais , Camundongos , Quitosana/farmacologia , Receptor 4 Toll-Like , Simulação de Acoplamento Molecular , Gentamicinas , Transdução de Sinais
10.
Animals (Basel) ; 12(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35405897

RESUMO

Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.

11.
Int Immunopharmacol ; 109: 108826, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35569308

RESUMO

Chitosan oligosaccharide (COS) plays a vital role in improving the host system and mucosal immune function. So far, the impact of COS on mucosal immune response in the early stage of oral administration is not well understood. Herein, the distribution of COS after oral gavage and the protein expression changes related to innate immune by tandem mass tag (TMT)-based proteomic analysis were investigated. The results revealed that COS was mainly distributed in the stomach, duodenum, and kidney and increased the number of monocytes and lymphocytes in peripheral blood. A total of 21,677 proteins and 7,483 protein groups were identified. Among them, 338 significant differentially expressed proteins were screened, including 205 upregulated and 133 downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the intestinal immune network for the IgA production pathway was activated, pIgR, MHCI, MHCII, Itgb2, Itgb7, and B2m were significantly increased (P < 0.05). Furthermore, the expression of the above molecular genes was detected by enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative real-time PCR. We found that the expressions of IgA, MHCII, TGF-ß1, IL-6, and pIgR were significantly increased (P < 0.05) 1 h after exposure to COS. The protein and mRNA expression of pIgR and MHCI were significantly increased (P < 0.05) at 0.5 h, while the AID protein level was significantly increased (P < 0.05) 1.5 h after COS exposure. The expression of MHCII and H2-Q10 was significantly increased (P < 0.05) by 1 h and 2 h post-exposure to COS. In conclusion, oral administration of COS can significantly enhance intestinal mucosal immunity in mice by activating the SIgA secretion pathway. These results suggest that COS can be used as an oral vaccine or drug adjuvant for small intestinal mucosa.


Assuntos
Quitosana , Imunoglobulina A Secretora , Animais , Imunidade nas Mucosas , Mucosa Intestinal , Intestino Delgado/metabolismo , Camundongos , Oligossacarídeos , Proteômica
12.
Int Immunopharmacol ; 99: 107727, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426115

RESUMO

Heat stress has severe implications on the health of mice involving intestinal mucosal barrier damage and dysregulated mucosal immune response. This study was designed with long-term heat stress to detect the protective effect of terpinen4-ol on body weight, colon length, organ index, morphological structure, inflammatory cytokines expression, Claudin-2, Occludin, and TLR4 signaling pathway of colonic tissue in mice under heat stress. A study found that oral administration of terpinen4-ol helped against mortality and intestinal inflammation in a mouse model of acute colitis induced by heat stress (40 °C per day for 4 h) exposed for 14 consecutive days. The mice were divided into five groups including control, heat stress, terpinen4-ol low dose (TER LD: 5 mg/kg), medium dose (TER MD: 10 mg/kg), and high dose (TER HD: 20 mg/kg) group. Our study showed that the heat-stress terpinen4-ol group had improved body weight, colon length, and organ index, the number of white blood cells, lymphocytes, and neutrophils in the blood as compared to the heat stress group. In addition, results showed that heat stress upregulated the expression of TLR4, p65, TNF-α, and IL-10. While, in mice receiving the oral administration of terpinen4-ol, the production of TNF-α, IL-10, TLR4, and p65 was suppressed on day 1, 7, and 14 of heat stress. In addition Claudin-2, Occludin mRNA levels were upregulated in mice receiving terpinen4-ol on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, TNF-α serum levels were also upregulated in mice under heat stress, but in mice receiving the oral administration of terpinen4-ol, the IL-6, IL-10, TNF-α level was down-regulated on day 1, 7, and 14 of heat stress. Histomorphological examination found that as compared to the control group, the muscle layer thickness and villi height of mice in the heat stress group were significantly reduced, while the changes of the above indicators in the terpinene4-ol groups were improved than those in the heat stress group. In conclusion, the terpinen4-ol has a protective effect on colonic tissue damage induced by heat stress.


Assuntos
Anti-Inflamatórios/uso terapêutico , Resposta ao Choque Térmico/efeitos dos fármacos , Terpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Claudinas/genética , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Citocinas/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Contagem de Leucócitos , Leucócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B , Ocludina/genética , Terpenos/farmacologia , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética
13.
Front Immunol ; 12: 717723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745096

RESUMO

Heat stressed pigs show typical characteristics of inflammatory bowel disease (IBD). However, little is known about the pathogenesis of heat stress (HS)-induced IBD in pigs. In this study, we determined the effects of HS on colon morphology, intestinal microbiota diversity, transcriptome genes (transcripts), and short chain fatty acids (SCFAs) metabolism in pigs. In addition, the correlation among these parameters was analyzed by weighted gene co-expression network analysis. Results showed that the liver and kidney functions related to blood biochemical indexes were partially changed in pigs under HS. Furthermore, the levels of diamine oxidase and D-lactic acid were significantly increased, whereas the levels of secretory immunoglobulin A were decreased. The integrity of colonic tissue was damaged under HS, as bleeding, lymphatic infiltration, and villi injury were observed. The concentrations of SCFAs in the colon, such as acetic acid and butyric acid, were decreased significantly. In addition, the composition of colon microbiota, such as decrease in Lactobacillus johnsonii, Lactobacillus reuteri and increase in Clostridium sensu stricto 1 of day 7 and 14 while under HS. These changes were associated with changes in the concentration of SCFAs and biochemical indexes above mentioned. Differentially expressed genes were enriched in the nucleotide-binding oligomerization domain-like receptor signaling pathway, Th17 cell differentiation, and IBD pathway, which were also associated with the changes in SCFAs. Thus, the structure, diversity of intestinal microorganisms, and changes in the levels of SCFAs in colon of heat stressed pigs changed significantly, contributing to the activation of immune response and inflammatory signal pathways and causing abnormal physiological and biochemical indexes and intestinal mucosal damage. These results highlight the interconnections between intestinal microbiota, SCFAs, and immune response and their role in the pathogenesis of stress induced IBD therapy.


Assuntos
Biodiversidade , Biomarcadores/sangue , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Resposta ao Choque Térmico , Transcriptoma , Animais , Biologia Computacional/métodos , Ácidos Graxos Voláteis/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Metaboloma , Metabolômica/métodos , Suínos
14.
Front Vet Sci ; 8: 808233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35146015

RESUMO

Baicalin is a natural plant extract with anti-inflammatory and anti-oxidant activities. However, the molecular mechanism of baicalin on oxidative stress in IPEC-J2 cells exposed to LPS remains to be unclear. In this study, LPS stimulation significantly increased Toll-like receptor 4, tumor necrosis factor-α, and interleukins (IL-6 and IL-1ß) expression in IPEC-J2 cells, and it activated the nuclear factor (NF-κB) expression. While, baicalin exerted anti-inflammatory effects by inhibiting NF-κB signaling pathway. LPS stimulation significantly increased the levels of the oxidative stress marker MDA, inhibited the anti-oxidant enzymes catalase and superoxide dismutase, which were all reversed by baicalin pre-treatment. It was found that baicalin treatment activated the nuclear import of nuclear factor-erythroid 2 related factor 2 (Nrf2) protein, and significantly increased the mRNA and protein expression of its downstream anti-oxidant factors such as heme oxygenase-1 and quinone oxidoreductase-1, which suggested that baicalin exerted anti-oxidant effects by activating the Nrf2-HO1 signaling pathway. Thus, pretreatment with baicalin inhibited LPS - induced oxidative stress and protected the normal physiological function of IPEC-J2 cells via NF-κB and Nrf2-HO1 signaling pathways.

15.
Front Nutr ; 8: 748118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660669

RESUMO

Herein, we assessed the anti-inflammatory and intestinal barrier protective effects of butyrolactone-I (BTL-1), derived from the coral-derived endophytic fungus (Aspergillus terreus), using the LPS-induced IPEC-J2 inflammation model and the DSS-induced IBD model in mice. In IPEC-J2 cells, pretreatment with BTL-I significantly inhibited TLR4/NF-κB signaling pathway and JNK phosphorylation, resulting in the decrease of IL-1ß and IL-6 expression. Interestingly, BTL-1 pretreatment activated the phosphorylation of ERK and P38, which significantly enhanced the expression of TNF-α. Meanwhile, BTL-1 pretreatment upregulated tight junction protein expression (ZO-1, occludin, and claudin-1) and maintained intestinal barrier and intestinal permeability integrity. In mice, BTL-1 significantly alleviated the intestinal inflammatory response induced by DSS, inhibited TLR4/NF-κB signaling pathway, and MAPK signaling pathway, thus reducing the production of IL-1, IL-6, and TNF-α. Further, the expression of tight junction proteins (ZO-1, occludin, and claudin-1) was upregulated in BTL-1 administrated mice. Therefore, it has been suggested that butyrolactone-I alleviates inflammatory responses in LPS-stimulated IPEC-J2 and DSS-induced murine colitis by TLR4/NF-κB and MAPK signal pathway. Thereby, BTL-1 might potentially be used as an ocean drug to prevent intestinal bowel disease.

16.
Sci Rep ; 11(1): 20608, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663855

RESUMO

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Assuntos
Quitosana/farmacologia , Resposta ao Choque Térmico/imunologia , Resposta ao Choque Térmico/fisiologia , Animais , Quitosana/metabolismo , Colite/tratamento farmacológico , Colite/imunologia , Colite/metabolismo , Citocinas/análise , Citocinas/sangue , Resposta ao Choque Térmico/efeitos dos fármacos , Inflamação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
17.
PLoS One ; 15(1): e0227617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914168

RESUMO

A Yunnan branched-spike (Ynbs) barley mutant is useful for study of the genetic mechanisms underlying variation in barley spike architecture. In the current study, a mutant (Ynbs-1), a recombinant inbred line (RIL-1), and a cultivar (BDM-8) were used as parents to develop populations. Ynbs-1 exhibits typical branched spike, whereas the others exhibit six-row spike. Genetic analysis on their F1, F2 and F3 populations showed that one recessive gene is responsible for the branched spike trait. SLAF marker generated from specific locus amplified fragment sequencing (SLAF-seq) was used to genotype the populations. A high-density genetic map of barley was constructed using 14,348 SLAF markers, which covered all 7 chromosomes at 1,347.44 cM in length with an average marker density of 0.09 cM between adjacent markers. Linkage analysis of the branched-spike trait using the genetic map indicated that branched spike trait in the Ynbs-1 is controlled by single locus on chromosome 2H at the interval between 65.00 and 65.47 cM that is flanked by Marker310119 and Marker2679451. Several candidate genes that may be responsible for barley multiple-spikelet degeneration, single-floret spikelet increase and seed set rate decrease were identified in the region. The high-density genetic map and the gene locus revealed in this study provide valuable information for elucidating the genetic mechanism of spike branching in barley.


Assuntos
Mapeamento Cromossômico/métodos , Hordeum/genética , Mutação , Cromossomos de Plantas , Loci Gênicos , Marcadores Genéticos , Haplótipos , Hordeum/anatomia & histologia , Hordeum/fisiologia , Sementes/genética
18.
Nat Commun ; 10(1): 4554, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591404

RESUMO

Explaining colour variation among animals at broad geographic scales remains challenging. Here we demonstrate how deep learning-a form of artificial intelligence-can reveal subtle but robust patterns of colour feature variation along an ecological gradient, as well as help identify the underlying mechanisms generating this biogeographic pattern. Using over 20,000 images with precise GPS locality information belonging to nearly 2,000 moth species from Taiwan, our deep learning model generates a 2048-dimension feature vector that accurately predicts each species' mean elevation based on colour and shape features. Using this multidimensional feature vector, we find that within-assemblage image feature variation is smaller in high elevation assemblages. Structural equation modeling suggests that this reduced image feature diversity is likely the result of colder environments selecting for darker colouration, which limits the colour diversity of assemblages at high elevations. Ultimately, with the help of deep learning, we will be able to explore the endless forms of natural morphological variation at unpreceded depths.


Assuntos
Inteligência Artificial , Biodiversidade , Cor , Variação Genética , Insetos/genética , Pigmentação da Pele/genética , Altitude , Animais , Clima , Aprendizado Profundo , Insetos/fisiologia , Mariposas/classificação , Mariposas/genética , Mariposas/fisiologia , Filogenia , Especificidade da Espécie , Temperatura
19.
Sci China C Life Sci ; 51(4): 346-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18368312

RESUMO

Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum-H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H. villosa 6VS/6AL translocation line were irradiated by 60CO-gamma ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2 - 3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translocation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by backcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome structural changes, especially for interstitial translocations.


Assuntos
Cromossomos de Plantas/genética , Cruzamentos Genéticos , Translocação Genética , Triticum/genética , Células Germinativas , Hibridização in Situ Fluorescente , Metáfase , Sementes/genética , Triticum/efeitos da radiação
20.
Eur J Med Chem ; 108: 605-615, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26722757

RESUMO

We previously reported potent hit compound 4 inhibiting the wild-type influenza A virus A/HK/68 (H3N2) and A/M2-S31N mutant viruses A/WS/33 (H1N1), with its latter activity quite weak. To further increase its potency, a structure-activity relationship study of a series of imidazole-linked pinanamine derivatives was conducted by modifying the imidazole ring of this compound. Several compounds of this series inhibited the amantadine-sensitive virus at low micromolar concentrations. Among them, 33 was the most potent compound, which was identified as being active on an amantadine-sensitive virus through blocking of the viral M2 ion channel. Furthermore, 33 markedly inhibited the amantadine-resistant virus (IC50 = 3.4 µM) and its activity increased by almost 24-fold compared to initial compound, with its action mechanism being not M2 channel mediated.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Farmacorresistência Viral/genética , Imidazóis/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Animais , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Imidazóis/síntese química , Imidazóis/química , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mutação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa