Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2309391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38456381

RESUMO

As p-type phase-change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two-dimensional (2D) p-type GeTe nanosheets are synthesized via a specially designed space-confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space-confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p-type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature-dependent electrical measurements demonstrate that variable-range hopping and optical-phonon-assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W-1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near-infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p-type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.

2.
Nano Lett ; 22(5): 2112-2119, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226511

RESUMO

Transition metal dichalcogenide monolayers exhibit ultrahigh surface sensitivity since they expose all atoms to the surface and thereby influence their optoelectronic properties. Here, we report an intriguing lightening of the photoluminescence (PL) from the edge to the interior over time in the WS2 monolayers grown by physical vapor deposition method, with the whole monolayer brightened eventually. Comprehensive optical studies reveal that the PL enhancement arises from the p doping induced by oxygen adsorption. First-principles calculations unveil that the dissociation of chemisorbed oxygen molecule plays a significant role; i.e., the dissociation at one site can largely promote the dissociation at a nearby site, facilitating the photoluminescence lightening. In addition, we further manipulate such PL brightening rate by controlling the oxygen concentration and the temperature. The presented results uncover the extraordinary surface chemistry and related mechanism in WS2 monolayers, which deepens our insight into their unique PL evolution behavior.

3.
Nano Lett ; 21(8): 3426-3434, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33872022

RESUMO

High-index semiconductor nanoantennae represent a powerful platform for nonlinear photon generation. Devices with reduced footprints are pivotal for higher integration capacity and energy efficiency in photonic integrated circuitry (PIC). Here, we report on a deep subwavelength nonlinear antenna based on dilute nitride GaNP nanowires (NWs), whose second harmonic generation (SHG) shows a 5-fold increase by incorporating ∼0.45% of nitrogen (N), in comparison with GaP counterpart. Further integrating with a gold (Au) thin film-based hybrid cavity achieves a significantly boosted SHG output by a factor of ∼380, with a nonlinear conversion efficiency up to 9.4 × 10-6 W-1. In addition, high-density zinc blende (ZB) twin phases were found to tailor the nonlinear radiation profile via dipolar interference, resulting in a highly symmetric polarimetric pattern well-suited for coupling with polarization nano-optics. Our results manifest dilute nitride nanoantenna as promising building blocks for future chip-based nonlinear photonic technology.

4.
Small ; 17(43): e2100560, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817963

RESUMO

Ruddlesden-Popper (RP) metal halide perovskites are considered as promising optoelectronic materials due to their good environmental stability and desirable optoelectronic properties. However, the phase composition and ordering in the deposited film, with a fixed ratio of large organic spacer cation in the precursor solution, are hard to be further tailored for specific optoelectronic applications. Herein, it is shown that even with a fixed spacer cation ratio, the phase composition and ordering can still be largely regulated by utilizing different crystallization kinetics of various cations with the inorganic octahedral lead halide. By using two different short cations to compete with the large spacer cation, the phase composition can be continuously tailored from thin multiple quantum wells (MQWs) dominated to 3D perovskite dominated. The phase ordering can be reversed from small n phases' prior to large n phases' prior near the substrate. Finally, with the same amount of large spacer cation protection, the perovskite can be tailored for both high-performance electroluminescence and photovoltaics with favorable energetic landscape for the corresponding desired first-order excitonic recombination and second-order free electron-hole recombination, respectively. This exploration substantially contributes to the understanding of precise phase engineering in RP perovskite and may provide a new insight into the design of multiple functional devices.

5.
Nano Lett ; 20(4): 2667-2673, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134674

RESUMO

Layered two-dimensional transition-metal dichalcogenides (2D-TMDs) are promising building blocks for ultracompact optoelectronic applications. Recently, a strong second harmonic generation (SHG) was observed in spiral stacked TMD nanostructures which was explained by its low crystal symmetry. However, the relationship between the efficiency of SHG signals and the electronic band structure remains unclear. Here, we show that the SHG signal in spiral WS2 nanostructures is strongly enhanced (∼100 fold increase) not only when the second harmonic signal is in resonance with the exciton states but also when the excitation energy is slightly above the electronic band gap, which we attribute to a large interband Berry connection associated with certain optical transitions in spiral WS2. The giant SHG enhancement observed and explained in this study could promote the understanding and utility of TMDs as highly efficient nonlinear optical materials and potentially lead to a new pathway to fabricate more efficient optical energy conversion devices.

6.
Nano Lett ; 19(2): 885-890, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608174

RESUMO

A coherent photon source emitting at near-infrared (NIR) wavelengths is at the heart of a wide variety of applications ranging from telecommunications and optical gas sensing to biological imaging and metrology. NIR-emitting semiconductor nanowires (NWs), acting both as a miniaturized optical resonator and as a photonic gain medium, are among the best-suited nanomaterials to achieve such goals. In this study, we demonstrate the NIR lasing at 1 µm from GaAs/GaNAs/GaAs core/shell/cap dilute nitride nanowires with only 2.5% nitrogen. The achieved lasing is characterized by an S-shape pump-power dependence and narrowing of the emission line width. Through examining the lasing performance from a set of different single NWs, a threshold gain, gth, of 4100-4800 cm-1, was derived with a spontaneous emission coupling factor, ß, up to 0.8, which demonstrates the great potential of such nanophotonic material. The lasing mode was found to arise from the fundamental HE11a mode of the Fabry-Perot cavity from a single NW, exhibiting optical polarization along the NW axis. Based on temperature dependence of the lasing emission, a high characteristic temperature, T0, of 160 (±10) K is estimated. Our results, therefore, demonstrate a promising alternative route to achieve room-temperature NIR NW lasers thanks to the excellent alloy tunability and superior optical performance of such dilute nitride materials.

7.
Nano Lett ; 19(10): 7217-7225, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545057

RESUMO

van der Waals multilayer heterostructures have drawn increasing attention due to the potential for achieving high-performance photonic and optoelectronic devices. However, the carrier interlayer transportation behavior in multilayer structures, which is essential for determining the device performance, remains unrevealed. Here, we report a general strategy for studying and manipulating the carrier interlayer transportation in van der Waals multilayers by constructing type-I heterostructures, with a desired narrower bandgap monolayer acting as a carrier extraction layer. For heterostructures comprised of multilayer PbI2 and monolayer WS2, we find similar interlayer diffusion coefficients of ∼0.039 and ∼0.032 cm2 s-1 for electrons and holes in the PbI2 multilayer by fitting the time-resolved carrier dynamics based on the diffusion model. Because of the balanced carrier interlayer diffusion and the injection process at the heterointerface, the photoluminescence emission of the bottom WS2 monolayer is greatly enhanced by up to 106-fold at an optimized PbI2 thickness of the heterostructure. Our results provide valuable information on carrier interlayer transportation in van der Waals multilayer structures and pave the way for utilizing carrier behaviors to improve device performances.

8.
J Am Chem Soc ; 141(30): 11754-11758, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31298855

RESUMO

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) are attractive for applications in a wide range of optoelectronic devices, due to their tremendous interesting physical properties. However, the photoluminescence quantum yield (PLQY) of TMDCs has been found to be too low, due to abundant defects and strong many-body effect. Here, we present a direct physical vapor growth of WO3-WS2 bilayer heterostructures, with WO3 monolayer domains attached on the surface of large-size WS2 monolayers. Optical characterizations revealed that the PLQY of the as-grown WO3-WS2 heterostructures can reach up to 11.6%, which is 2 orders of magnitude higher than that of WS2 monolayers by the physical vapor deposition growth method (PVD-WS2) and about 13-times higher than that of mechanical exfoliated WS2 (ME-WS2) monolayers, representing the highest PLQY reported for direct growth TMDCs materials so far. The PL enhancement mechanism has been well investigated by time-resolved optical measurements. The fabrication of WO3-WS2 heterostructures with ultrahigh PLQY provides an efficient approach for the development of highly efficient 2D integrated photonic applications.

9.
Nat Mater ; 17(8): 703-709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013057

RESUMO

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

10.
Nano Lett ; 17(3): 1775-1781, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28170267

RESUMO

Nanowire (NW) lasers operating in the near-infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, gth, of 3300 cm-1 and a spontaneous emission coupling factor, ß, of 0.045. The dominant lasing peak is identified to arise from the HE21b cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional passivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.

11.
Nanotechnology ; 27(42): 425401, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27632684

RESUMO

In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

12.
Nanomaterials (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607148

RESUMO

Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.

13.
ACS Nano ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470132

RESUMO

Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS2/CsPbBr3 van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr3 to significantly improve the photoelectric performance of monolayer WS2. We first propose the scenario of resonant ET between the dark state of CsPbBr3 and WS2, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr3 is identified as a long-range donor-bridge-acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS2. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.

14.
Adv Mater ; 36(14): e2312425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146671

RESUMO

2D transition metal dichalcogenides (TMDCs) are considered as promising materials in post-Moore technology. However, the low photoluminescence quantum yields (PLQY) and single carrier polarity due to the inevitable defects during material preparation are great obstacles to their practical applications. Here, an extraordinary defect engineering strategy is reported based on first-principles calculations and realize it experimentally on WS2 monolayers by doping with IIIA atoms. The doped samples with large sizes possess both giant PLQY enhancement and effective carrier polarity modulation. Surprisingly, the high PL emission maintained even after one year under ambient environment. Moreover, the constructed p-n homojunctions shows high rectification ratio (≈2200), ultrafast response times and excellent stability. Meanwhile, the doping strategy is universally applicable to other TMDCs and dopants. This smart defect engineering strategy not only provides a general scheme to eliminate the negative influence of defects, but also utilize them to achieve desired optoelectronic properties for multifunctional applications.

15.
Nanoscale ; 15(9): 4438-4447, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752096

RESUMO

Low-dimensional group IV-VI metal chalcogenide-based semiconductors hold great promise for opto-electronic device applications owing to their diverse crystalline phases and intriguing properties related to thermoelectric and ferroelectric effects. Herein, we demonstrate a universal chemical vapor deposition (CVD) growth method to synthesize stable germanium chalcogenide-based (GeS, GeS2, GeSe, GeSe2) nanosheets, which increases the library of the p-type semiconductor. The phase transition between different crystalline polytypes can be deterministically controlled by hydrogen concentration in the reaction chamber. Structural characterization and synthesis experiments identify the behavior, where the higher hydrogen concentration promotes the transiton from germanium dichalcogenides to germanium monochalcogenides. The angle-polarized and temperature-dependent Raman spectra demonstrate the strong interlayer coupling and lattice orientation. Based on the optimized growth scheme and systematic comparison of electrical properties, GeSe nanosheet photodetectors were demonstrated, which exhibit superior device performance on SiO2/Si and HfO2/Si substrate with a high photoresponsivity up to 104 A W-1, fast response time less than 15 ms, and high mobility of 3.2 cm2 V-1 s-1, which is comparable to the mechanically exfoliated crystals. Our results manifest the hydrogen-mediated deposition strategy as a facile control knob to engineer crystalline phases of germanium chalcogenides for high performance optoelectronic devices.

16.
Adv Mater ; 35(16): e2210909, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36708237

RESUMO

Moiré superlattices in twisted van der Waals materials offer a powerful platform for exploring light-matter interactions. The periodic moiré potentials in moiré superlattices can induce strongly correlated quantum phenomena that depend on the moiré potential associated with interlayer coupling at the interface. However, moiré superlattices are primarily prepared by mechanical exfoliation and manual stacking, where the transfer methods easily cause interfacial contamination, and the preparation of high-quality bilayer 2D materials with small twist angles by growth methods remains a significant challenge. In this work, WSe2 /WSe2 homobilayers with different twist angles by chemical vapor deposition (CVD), using a heteroatom-assisted growth technique, are synthesized. Using low-frequency Raman scattering, the uniformity of the moiré superlattices is mapped to demonstrate the strong interfacial coupling of the CVD-fabricated twist-angle homobilayers. The moiré potential depths of the CVD-grown and artificially stacked homostructures with twist angles of 1.5° are 115 and 45 meV (an increase of 155%), indicating that the depth of moiré potential can be modulated by the interfacial coupling. These results open a new avenue to study the modulation of moiré potential by strong interlayer coupling and provide a foundation for the development of twistronics.

17.
Light Sci Appl ; 11(1): 166, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650176

RESUMO

Recent advances in twisted van der Waals heterostructure superlattices have emerged as a powerful and attractive platform for exploring novel condensed matter physics due to the interplay between the moiré potential and Coulomb interactions. The moiré superlattices act as a periodic confinement potential in space to capture interlayer excitons (IXs), resulting in moiré exciton arrays, which provide opportunities for quantum emitters and many-body physics. The observation of moiré IXs in twisted transition-metal dichalcogenide (TMD) heterostructures has recently been widely reported. However, the capture and study of the moiré intralayer excitons based on TMD twisted homobilayer (T-HB) remain elusive. Here, we report the observation of moiré intralayer excitons in a WSe2/WSe2 T-HB with a small twist angle by measuring PL spectrum. The multiple split peaks with an energy range of 1.55-1.73 eV are different from that of the monolayer WSe2 exciton peaks. The split peaks were caused by the trapping of intralayer excitons via the moiré potential. The confinement effect of the moiré potential on the moiré intralayer excitons was further demonstrated by the changing of temperature, laser power, and valley polarization. Our findings provide a new avenue for exploring new correlated quantum phenomena and their applications.

18.
J Hazard Mater ; 426: 127828, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34815121

RESUMO

Visible light catalysis has been widely coupled with persulfate activation for refractory pollutants removal, while the exact role of persulfate played in such composite system is still questionable. In this work, the relation between peroxymonosulfate (PMS) induced structure change and visible light responsive activity of inverse spinel: i.e., Zn2SnO4, was deciphered. Under the visible light illumination (λ> 420nm) PMS addition would endow the composite system with pollutant removal performance. Batch test revealed that 60% of bisphenol-A (5 mg L-1) was mineralized within 3 h reaction time, by dosing 0.81 mM PMS and 0.1 g L-1 catalyst. The above oxidative system was also effective for other refractory pollutants elimination. Further analysis indicated that PMS could reduce the band gap of spinel from 2.75 to 2.52 eV and thereby enabling its visible light activity. Photogenerated h+ induced •OH and e- mediated •O2- contributed to the pollutant removal while h+ played a leading role. Density functional theory revealed that PMS would capture oxygen atom of spinel and induce surface oxygen vacancy defect structure formation. Also, three-oxygen atom coordinated Zn was identified as the possible catalyze site. This work is valuable for deep understanding the exact role of persulfate in photocatalytic system.

19.
Front Optoelectron ; 15(1): 41, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36637698

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted extensive attention due to their unique electronic and optical properties. In particular, TMDs can be flexibly combined to form diverse vertical van der Waals (vdWs) heterostructures without the limitation of lattice matching, which creates vast opportunities for fundamental investigation of novel optoelectronic applications. Here, we report an atomically thin vertical p-n junction WSe2/MoS2 produced by a chemical vapor deposition method. Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties. Back gate field effect transistor (FET) constructed using this p-n junction exhibits bipolar behaviors and a mobility of 9 cm2/(V·s). In addition, the photodetector based on MoS2/WSe2 heterostructures displays outstanding optoelectronic properties (R = 8 A/W, D* = 2.93 × 1011 Jones, on/off ratio of 104), which benefited from the built-in electric field across the interface. The direct growth of TMDs p-n vertical heterostructures may offer a novel platform for future optoelectronic applications.

20.
ACS Appl Mater Interfaces ; 14(17): 19869-19877, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438495

RESUMO

Achieving facile control of the wavelength of light emitters is of great significance for many key applications in optoelectronics and photonics, including on-chip interconnection, super-resolution imaging, and optical communication. The Joule heating effect caused by electric current is widely applied in modulating the refractive index of silicon-based waveguides for reconfigurable nanophotonic circuits. Here, by utilizing localized Joule heating in the biased graphene device, we demonstrate electrically controlled wavelength-tunable photoluminescence (PL) from vertical van der Waals heterostructures combined by graphene and two-dimensional transition metal dichalcogenides (2D-TMDCs). By applying a moderate electric field of 6.5 kV·cm-1 to the graphene substrate, the PL wavelength of 2D-TMDCs exhibits a continuous tuning from 662 to 690 nm, corresponding to a bandgap reduction of 76 meV. The electric control is highly reversible during sweeping the bias back and forth. The temperature dependence of Raman and PL spectroscopy reveals that the current-induced local Joule heating effect plays a leading role in reducing the optical direct bandgap of TMDCs. The bias-dependent optical reflectivity and time-resolved photoluminescence measurements show a consistent reduction of the optical band gap of 2D-TMDCs and increased PL lifetimes with the electric field over the heterostructures. Moreover, we demonstrate the consistent device operation from 2D materials grown by chemical vapor deposition, showing great advantages for the scalability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa