Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 601(7894): 562-567, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082417

RESUMO

In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap1. In the high-transition-temperature (high-Tc) cuprates, although the transport, magnetic and thermodynamic signatures of Tc have been known since the 1980s2, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)2Sr2CaCu2O8+δ (Bi2212). We first probe the momentum-resolved electronic specific heat via spectroscopy and reproduce the specific heat peak at Tc, completing the missing link for a holistic description of superconductivity. Then, by studying the full momentum, energy and temperature evolution of the spectra, we reveal that this thermodynamic anomaly arises from the singular growth of in-gap spectral intensity across Tc. Furthermore, we observe that the temperature evolution of in-gap intensity is highly anisotropic in the momentum space, and the gap itself obeys both the d-wave functional form and particle-hole symmetry. These findings support the scenario that the superconducting transition is driven by phase fluctuations. They also serve as an anchor point for understanding the Fermi arc and pseudogap phenomena in underdoped cuprates.

2.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339982

RESUMO

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Assuntos
Câmbio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Fatores de Transcrição , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Proliferação de Células , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Madeira/genética
3.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
4.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35616329

RESUMO

The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.


Assuntos
Acrossomo , Infertilidade Masculina , Acrossomo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo
5.
Cell Mol Life Sci ; 81(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448737

RESUMO

Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.


Assuntos
Axonema , Proteínas dos Microtúbulos , Sêmen , Humanos , Masculino , Animais , Camundongos , Feminino , Microscopia Crioeletrônica , Motilidade dos Espermatozoides , Espermatozoides , Flagelos
6.
Proc Natl Acad Sci U S A ; 119(32): e2204630119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914123

RESUMO

The effect of Lifshitz transition on thermodynamics and superconductivity in hole-doped cuprates has been heavily debated but remains an open question. In particular, an observed peak of electronic specific heat is proposed to originate from fluctuations of a putative quantum critical point p* (e.g., the termination of pseudogap at zero temperature), which is close to but distinguishable from the Lifshitz transition in overdoped La-based cuprates where the Fermi surface transforms from hole-like to electron-like. Here we report an in situ angle-resolved photoemission spectroscopy study of three-dimensional Fermi surfaces in La2-xSrxCuO4 thin films (x = 0.06 to 0.35). With accurate kz dispersion quantification, the said Lifshitz transition is determined to happen within a finite range around x = 0.21. Normal state electronic specific heat, calculated from spectroscopy-derived band parameters, reveals a doping-dependent profile with a maximum at x = 0.21 that agrees with previous thermodynamic microcalorimetry measurements. The account of the specific heat maximum by underlying band structures excludes the need for additionally dominant contribution from the quantum fluctuations at p*. A d-wave superconducting gap smoothly across the Lifshitz transition demonstrates the insensitivity of superconductivity to the dramatic density of states enhancement.

7.
Proc Natl Acad Sci U S A ; 119(49): e2211429119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442087

RESUMO

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1-G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6-G8, showing high expression of HOXA/B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Transcriptoma , Leucemia Mieloide Aguda/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas
8.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
9.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874010

RESUMO

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

10.
J Cell Mol Med ; 28(3): e18114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38323741

RESUMO

Patients with Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) often face a grim prognosis, with PDGFRB gene fusions being commonly detected in this subgroup. Our study has unveiled a newfound fusion gene, TERF2::PDGFRB, and we have found that patients carrying this fusion gene exhibit sensitivity to dasatinib. Ba/F3 cells harbouring the TERF2::PDGFRB fusion display IL-3-independent cell proliferation through activation of the p-PDGFRB and p-STAT5 signalling pathways. These cells exhibit reduced apoptosis and demonstrate sensitivity to imatinib in vitro. When transfused into mice, Ba/F3 cells with the TERF2::PDGFRB fusion gene induce tumorigenesis and a shortened lifespan in cell-derived graft models, but this outcome can be improved with imatinib treatment. In summary, we have identified the novel TERF2::PDGFRB fusion gene, which exhibits oncogenic potential both in vitro and in vivo, making it a potential therapeutic target for tyrosine kinase inhibitors (TKIs).


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Proteína 2 de Ligação a Repetições Teloméricas , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Mesilato de Imatinib , Inibidores de Proteínas Quinases/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
11.
J Am Chem Soc ; 146(20): 14105-14113, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717019

RESUMO

The recent revolution in the superconductivity field stems from hydride superconductors. Multicomponent hydrides provide a crucial platform for tracking high-temperature superconductors. Besides high superconducting transition temperature (Tc), achieving both giant upper critical magnetic field [µ0Hc2(0)] and high critical current density [Jc(0)] is also key to the latent potential of the application for hydride superconductors. In this work, we have successfully synthesized quaternary La-Y-Ce hydrides with excellent properties under moderate pressure by using the concept of "entropy engineering." The obtained temperature dependence of the resistance provides evidence for the superconductivity of Fm3m-(La,Y,Ce)H10, with the maximum Tc ∼ 190 K (at 112 GPa). Notably, Fm3m-(La,Y,Ce)H10 boasts exceptional properties: µ0Hc2(0) reaching 292 T and Jc(0) surpassing 4.61 × 107 A/cm2. Compared with the binary LaH10/YH10, we find that the Fm3m structure in (La,Y,Ce)H10 can be stable at relatively low pressures (112 GPa). These results indicate that multicomponent hydrides can significantly enhance the superconducting properties and regulate stabilizing pressure through the application of "entropy engineering." This work stimulates the experimental exploration of multihydride superconductors and also provides a reference for the search of room-temperature superconductors in more diversified hydride materials in the future.

12.
J Am Chem Soc ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225242

RESUMO

Single-bonded polymeric nitrogen has gained tremendous research interest because of its unique physical properties and great potential applications. Despite much progress in theoretical predictions, it is still challenging to experimentally synthesize polynitrogen compounds with novel all-single-bonded units. Herein, we have synthesized two brand-new lanthanum supernitrides LaN8, through a direct reaction between La and N2 in laser-heated diamond anvil cells at megabar pressures. Our experiments and calculations revealed that two LaN8 phases had the R-3 and P4/n symmetry characterized by a unique 2D network with N18 macro-rings and cagelike N8 building blocks, respectively. Differing from known polynitrogen structures, these two polymers were composed of single-bonded nitrogen atoms belonging to sp3 and sp2 hybridizations. In particular, P4/n LaN8 possessed the longest N-N bond length among all of the experimentally reported metal nitrides, potentially being a high-energy-density material. The present study opens a fresh, promising avenue for the rational design and discovery of new supernitrides with unique nitrogen structures via the high-pressure treatment.

13.
Rheumatology (Oxford) ; 63(9): 2578-2589, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38837706

RESUMO

OBJECTIVES: Increasing studies demonstrated the importance of C5a and anti-neutrophil cytoplasmic antibody (ANCA)-induced neutrophil activation in the pathogenesis of ANCA-associated vasculitis (AAV). Sphingosine-1-phosphate (S1P) acts as a downstream effector molecule of C5a and enhances neutrophil activation induced by C5a and ANCA. The current study investigated the role of a S1P receptor modulator, FTY720, in experimental autoimmune vasculitis (EAV) and explored the immunometabolism-related mechanisms of FTY720 in modulating ANCA-induced neutrophil activation. METHODS: The effects of FTY720 in EAV were evaluated by quantifying haematuria, proteinuria, crescent formation, tubulointerstitial injury and pulmonary haemorrhage. RNA sequencing of renal cortex and gene enrichment analysis were performed. The proteins of key identified pathways were analysed in neutrophils isolated from peripheral blood of patients with active AAV and normal controls. We assessed the effects of FTY720 on ANCA-induced neutrophil respiratory burst and neutrophil extracellular traps formation (NETosis). RESULTS: FTY720 treatment significantly attenuated renal injury and pulmonary haemorrhage in EAV. RNA sequencing analyses of renal cortex demonstrated enhanced fatty acid oxidation (FAO) and peroxisome proliferator-activated receptor (PPAR) signalling in FTY720-treated rats. Compared with normal controls, patients with active AAV showed decreased FAO in neutrophils. FTY720-treated differentiated HL-60 cells showed increased expression of carnitine palmitoyltransferase 1a (CPT1a) and PPARα. Blocking or knockdown of CPT1a or PPARα in isolated human neutrophils and HL-60 cells reversed the inhibitory effects of FTY720 on ANCA-induced neutrophil respiratory burst and NETosis. CONCLUSION: FTY720 attenuated renal injury in EAV through upregulating FAO via the PPARα-CPT1a pathway in neutrophils, offering potential immunometabolic targets in AAV treatment.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Ácidos Graxos , Cloridrato de Fingolimode , Neutrófilos , Oxirredução , PPAR alfa , Cloridrato de Fingolimode/farmacologia , PPAR alfa/metabolismo , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Ratos , Humanos , Ácidos Graxos/metabolismo , Oxirredução/efeitos dos fármacos , Masculino , Peroxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Ativação de Neutrófilo/efeitos dos fármacos , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia
14.
Cytokine ; 183: 156735, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173282

RESUMO

OBJECTIVE: Inflammatory cytokines have been linked to digestive system cancers, yet their exact causal connection remains uncertain. Consequently, we conducted a Mendelian randomization (MR) analysis to gauge how inflammatory cytokines are linked to the risk of five prevalent digestive system cancers (DSCs). METHODS: We collected genetic variation data for 41 inflammatory cytokines from genome-wide association studies (GWAS), and the results data for five common diseases from the Finnish database. Our primary analytical approach involved employing the inverse-variance weighted, residual sum (IVW) method, complemented by the MR-Egger method, the weighted median method, simple mode analysis, and weighted mode analysis as supplementary analytical techniques. Furthermore, we conducted multiple sensitivity analyses. RESULTS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), macrophage colony-stimulating factor (M-CSF), and interleukin (IL)-18 showed a negative association with the risk of hepatocellular carcinoma. Conversely, TRAIL was inversely linked to the risk of gastric cancer, while IL-16 exhibited a positive correlation with gastric cancer risk. Stem cell factor (SCF) acted as a protective factor against pancreatic cancer. For colorectal cancer, IL-7, IL-9, IL-13, and vascular endothelial growth factor (VEGF) were identified as risk factors. Notably, our results did not indicate a significant correlation between inflammatory cytokines and the risk of esophageal cancer. CONCLUSION: Our research unveils potential connections between 41 inflammatory cytokines and the risk of five common DSCs through a MR analysis. These associations offer valuable insights that could aid in the development of diagnostic biomarkers and the identification of novel therapeutic targets for DSCs.


Assuntos
Citocinas , Neoplasias do Sistema Digestório , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Citocinas/metabolismo , Neoplasias do Sistema Digestório/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único/genética , Inflamação/genética , Predisposição Genética para Doença
15.
Reproduction ; 168(4)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042720

RESUMO

In brief: PLCZ1 mutations are related to total fertilisation failure (TFF) after intracytoplasmic sperm injection (ICSI), characterised by abnormal oocyte oscillations. The novel PLCZ1 compound heterozygous mutations reported by this study were associated with TFF after ICSI, with one of the mutations indicating a gene dosage effect. Abstract: Oocyte activation failure is thought to be one of the main factors for total fertilisation failure (TFF) after intracytoplasmic sperm injection (ICSI), which could be induced by abnormal calcium oscillations. Phospholipase C zeta (PLCZ), a sperm factor, is associated with Ca2+ oscillations in mammalian oocytes. To date, some mutations in PLCZ1 (the gene that encodes PLCZ) have been linked to TFF, as demonstrated by the observed reduction in protein levels or activity to induce Ca2+ oscillations. In this study, normozoospermic males whose sperms exhibited TFF after ICSI and their families were recruited. First, mutations in the PLCZ1 sequence were identified by whole exome sequencing and validated using Sanger sequencing. Then, the locations of PLCZ1/PLCZ and the transcript and protein levels in the sperm of the patients were studied. Subsequently, in vitro function analysis and in silico analysis were performed to investigate the function-structure correlation of mutations identified in PLCZ1 using western blotting, immunofluorescence, RT-qPCR, and molecular simulation. Ca2+ oscillations were detected after cRNA microinjection into MII mouse oocytes to investigate calcium oscillations induced by abnormal PLCZ. Five variants with compound heterozygosity were identified, consisting of five new mutations and three previously reported mutations distributed across the main domains of PLCZ, except the EF hands domain. The transcript and protein levels decreased to varying degrees among all detected mutations in PLCZ1 when transfected in HEK293T cells. Among these, mutations in M138V and R391* of PLCZ were unable to trigger typical Ca2+ oscillations. In case 5, aberrant localisation of PLCZ in the sperm head and an increased expression of PLCZ in the sperm were observed. In conclusion, this study enhances the potential for genetic diagnosis of TFF in clinics and elucidates the possible relationship between the function and structure of PLCZ in novel mutations.


Assuntos
Heterozigoto , Mutação , Fosfoinositídeo Fosfolipase C , Injeções de Esperma Intracitoplásmicas , Masculino , Humanos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Feminino , Oócitos/metabolismo , Animais , Espermatozoides/metabolismo , Espermatozoides/patologia , Adulto , Camundongos , Sinalização do Cálcio/genética , Infertilidade Masculina/genética
16.
Rev Cardiovasc Med ; 25(3): 92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39076938

RESUMO

Background: Gender is a well-recognized risk factor in atrial fibrillation (AF)-related ischemic stroke. The association of gender with the use of oral anticoagulants (OACs) and prognosis remains unknown. Methods: The National Health Insurance Research Database in Taiwan identified 203,775 patients with AF aged ≥ 20 years from 2012 to 2018, with 55.4% of males. Our main study cohort included 67,426 patients using OACs. The study endpoints include death, ischemic stroke, intracranial hemorrhage, major bleeding, and composite adverse events. Results: Significant differences were found in baseline characteristics between sexes. Female patients with AF were older and had higher CHA 2 DS 2 -VASc and HAS-BLED scores. Non-vitamin K antagonist oral anticoagulant (NOAC) use was more prominent in females while the use of warfarin was similar in both sexes. The distribution of baseline characteristics between the warfarin and NOAC groups in both sexes was much alike. Among the whole study cohort, NOAC was associated with a decreased risk of clinical endpoints compared to warfarin, which remained the same in subgroup analyses of both sexes. Additionally, a greater risk reduction of ischemic stroke with NOAC was observed in female patients compared to male patients (adjusted hazard ratio: 0.517 in males, 0.425 in females, interaction p = 0.040). Conclusions: This nationwide cohort demonstrated the differences between male and female patients with AF, including baseline characteristics, risk profiles, and medication use. Despite great differences in baseline demographic data, NOAC was associated with better clinical outcomes compared to warfarin in both sexes, and females benefited more than males in preventing ischemic stroke using NOACs.

17.
Respir Res ; 25(1): 83, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331782

RESUMO

Recent evidence has increasingly underscored the importance of the neuro-immune axis in mediating allergic airway diseases, such as allergic asthma and allergic rhinitis. The intimate spatial relationship between neurons and immune cells suggests that their interactions play a pivotal role in regulating allergic airway inflammation. Upon direct activation by allergens, neurons and immune cells engage in interactions, during which neurotransmitters and neuropeptides released by neurons modulate immune cell activity. Meanwhile, immune cells release inflammatory mediators such as histamine and cytokines, stimulating neurons and amplifying neuropeptide production, thereby exacerbating allergic inflammation. The dynamic interplay between the nervous and immune systems suggests that targeting the neuro-immune axis in the airway could represent a novel approach to treating allergic airway diseases. This review summarized recent evidence on the nervous system's regulatory mechanisms in immune responses and identified potential therapeutic targets along the peripheral nerve-immune axis for allergic asthma and allergic rhinitis. The findings will provide novel perspectives on the management of allergic airway diseases in the future.


Assuntos
Asma , Neuropeptídeos , Transtornos Respiratórios , Rinite Alérgica , Humanos , Neuroimunomodulação , Asma/tratamento farmacológico , Sistema Respiratório , Rinite Alérgica/tratamento farmacológico , Inflamação
18.
Inorg Chem ; 63(38): 17672-17680, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39259024

RESUMO

Cluster-assembled nanowires provide a unique strategy for the preparation of high-performance nanostructures. However, existing preparations are limited by complex processes and harsh reaction conditions. Here, Ag+ ions were utilized as a novel structure-directing agent to generate the self-assembly of Pt clusters to form ultrafine nanowires with a diameter of less than 5 nm. Electrospray ionization mass spectrometry (ESI-MS) and extended X-ray absorption fine structure (EXAFS) characterizations demonstrated that every Ag+ bridged two [Pt3(CO)3(µ2-CO)3]n2- clusters through coordination and formed a sandwich-like structure of [Pt3(CO)3(µ2-CO)3]nAg[Pt3(CO)3(µ2-CO)3]m3-. As a result, multiple sandwich-like structures of [Pt3(CO)3(µ2-CO)3]nAg[Pt3(CO)3(µ2-CO)3]m3- were established by Ag+ to form Pt nanowire superstructures {[Pt3(CO)6]nAg[Pt3(CO)6]mAg[Pt3(CO)6]x}∞ (abbreviated as Ag-Pt NWS). Our results demonstrate that the Pt nanowire superstructures showed promising cocatalytic performance for photocatalytic H2 production with the involvement of Ag+, which promises a desirable way to develop advanced functional nanomaterials.

19.
Phys Chem Chem Phys ; 26(9): 7371-7376, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376428

RESUMO

The experimentally discovered FeH5 exhibits a structure built of atomic hydrogen that only has bonding between hydrogen and iron atoms [C. M. Pepin, G. Geneste, A. Dewaele, M. Mezouar and P. Loubeyre, Science, 2017, 357, 382]. However, its superconductivity has remained unsolved since its discovery. In this work, we have synthesized I4/mmm-FeH5 at 139 GPa combined with laser-heating conditions. The electrical resistance measurements at ultrahigh pressures indicate that no evidence of superconducting transition of FeH5 is observed in the temperature range of 1.5 K to 270 K. These results indicate that I4/mmm-FeH5 does not exhibit superconductivity within the experimental temperature range, and the introduction of iron atoms is not beneficial to the formation of the superconducting phase.

20.
Acta Pharmacol Sin ; 45(9): 1793-1808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38740904

RESUMO

The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Humanos , Ritmo Circadiano/fisiologia , Células HEK293 , Proteólise , Relógios Circadianos/fisiologia , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa