Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35616329

RESUMO

The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.


Assuntos
Acrossomo , Infertilidade Masculina , Acrossomo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo
2.
Cell Mol Life Sci ; 81(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448737

RESUMO

Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.


Assuntos
Axonema , Proteínas dos Microtúbulos , Sêmen , Humanos , Masculino , Animais , Camundongos , Feminino , Microscopia Crioeletrônica , Motilidade dos Espermatozoides , Espermatozoides , Flagelos
3.
Mol Reprod Dev ; 87(2): 223-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011766

RESUMO

Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh-Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α-smooth muscle actin-labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3ß-HSD double-positive fetal LCs could be observed in Amh-Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3ß-HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs' central role in fetal testis development.


Assuntos
Diferenciação Celular/genética , Toxina Diftérica/genética , Maturidade dos Órgãos Fetais , Integrases/genética , Fragmentos de Peptídeos/genética , Túbulos Seminíferos/embriologia , Células de Sertoli/metabolismo , Animais , Proliferação de Células/genética , Toxina Diftérica/metabolismo , Células Germinativas/metabolismo , Integrases/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Modelos Animais , Fragmentos de Peptídeos/metabolismo , Ratos Transgênicos , Espermatogênese
4.
Cell Mol Life Sci ; 76(9): 1713-1727, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30671589

RESUMO

Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.


Assuntos
Cromossomos Humanos Par 12/genética , Predisposição Genética para Doença/genética , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Animais , Antígeno B7-H1/metabolismo , Progressão da Doença , Células Germinativas/patologia , Humanos , Masculino , Camundongos , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Risco , Testes Sorológicos , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
5.
J Proteome Res ; 18(4): 1819-1826, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30835130

RESUMO

Seminoma and embryonal carcinoma (EC), two typical types of testicular germ cell tumors (TGCTs), present significant differences in growth behavior, expression characteristics, differentiation potential, clinical features, therapy, and prognosis. The purpose of this study was to compare the distinctive or preference metabolic pathways between seminoma and EC. The Cancer Genome Atlas revealed that many genes encoding metabolic enzymes could distinguish between seminoma and EC. Using well-characterized cell line models for seminoma (Tcam-2 cells) and EC (NT2 cells), we characterized their metabolite profiles using ultraperformance liquid chromatography coupled to Q-TOF mass spectrometry (UPLC/Q-TOF MS). In general, the integrated results from transcriptome and metabolite profiling revealed that seminoma and EC exhibited distinctive characteristics in the metabolisms of amino acids, glucose, fatty acids, sphingolipids, nucleotides, and drugs. Notably, an attenuation of citric acid cycle/mitochondrial oxidative phosphorylation and sphingolipid biosynthesis as well as an increase in arachidonic acid metabolism and (very) long-chain fatty acid abundance occurred in seminoma as compared with EC. Our study suggests histologic subtype-dependent metabolic reprogramming in TGCTs and will lead to a better understanding of the metabolic signatures and biology of TGCT subtypes.


Assuntos
Carcinoma Embrionário/metabolismo , Metaboloma/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Seminoma/metabolismo , Neoplasias Testiculares/metabolismo , Transcriptoma/genética , Carcinoma Embrionário/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Espectrometria de Massas , Neoplasias Embrionárias de Células Germinativas/genética , Seminoma/genética , Neoplasias Testiculares/genética
6.
FASEB J ; 32(3): 1653-1664, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29183964

RESUMO

The assembly of the blood-testis barrier (BTB) during postnatal development is crucial to support meiosis. However, the role of germ cells in BTB assembly remains unclear. Herein, KitW/KitWV mice were used as a study model. These mice were infertile, failing to establish a functional BTB to support meiosis due to c-Kit mutation. Transplantation of undifferentiated spermatogonia derived from normal mice into the testis of KitW/KitWV mice triggered functional BTB assembly, displaying cyclic remodeling during the epithelial cycle. Also, transplanted germ cells were capable of inducing Leydig cell testosterone production, which could enhance the expression of integral membrane protein claudin 3 in Sertoli cells. Early spermatocytes were shown to play a vital role in directing BTB assembly by expressing claudin 3, which likely created a transient adhesion structure to mediate BTB and cytoskeleton assembly in adjacent Sertoli cells. In summary, the positive modulation of germ cells on somatic cell function provides useful information regarding somatic-germ cell interactions.-Li, X.-Y., Zhang, Y., Wang, X.-X., Jin, C., Wang, Y.-Q., Sun, T.-C., Li, J., Tang, J.-X., Batool, A., Deng, S.-L., Chen, S.-R., Cheng, C. Y., Liu, Y.-X. Regulation of blood-testis barrier assembly in vivo by germ cells.


Assuntos
Barreira Hematotesticular/metabolismo , Claudina-3/biossíntese , Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/metabolismo , Animais , Barreira Hematotesticular/citologia , Claudina-3/genética , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Células de Sertoli/citologia , Espermatogônias/citologia
7.
BMC Biotechnol ; 18(1): 61, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285700

RESUMO

BACKGROUND: Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) has been wildly used to generate gene knockout models through inducing indels causing frame-shift. However, there are few studies concerning the post-transcript effects caused by CRISPR-mediated genome editing. RESULTS: In the present study, we showed that gene knockdown model also could be generated using CRISPR-mediated gene editing by disrupting the boundary of exon and intron in mice (C57BL/6 J). CRISPR induced indel at the boundary of exon and intron (5' splice site) caused alternative splicing and produced multiple different mRNAs, most of these mRNAs introduced premature termination codon causing down expression of the gene. CONCLUSIONS: These results showed that alternative splicing mutants were able to generate through CRISPR-mediated genome editing by deleting the boundary of exon and intron causing disruption of 5' splice site. Although alternative splicing was an unexpected outcome, this finding could be developed as a technology to generate gene knockdown models or to investigate pre-mRNA splicing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Silenciamento de Genes/métodos , Camundongos/genética , Precursores de RNA/genética , Splicing de RNA , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Éxons , Mutação INDEL , Íntrons , Camundongos Endogâmicos C57BL
8.
Reproduction ; 156(4): 343­351, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306767

RESUMO

Reduced contractility of the testicular peritubular myoid (PTM) cells may contribute to human male subfertility or infertility. Transcription factor GATA4 in Sertoli and Leydig cells is essential for murine spermatogenesis, but limited attention has been paid to the potential role of GATA4 in PTM cells. In primary cultures of mouse PTM cells, siRNA knockdown of GATA4 increased the contractile activity, while GATA4 overexpression significantly attenuated the contractility of PTM cells using a collagen gel contraction assay. Using RNA sequencing and qRT-PCR, we identified a set of genes that exhibited opposite expressional alternation between Gata4 siRNA vs nontargeting siRNA-treated PTM cells and Gata4 adenovirus vs control adenovirus-treated PTM cells. Notably, ion channels, smooth muscle function, cytokines and chemokines, cytoskeleton, adhesion and extracellular matrix were the top four enriched pathways, as revealed by cluster analysis. Natriuretic peptide type B (NPPB) content was significantly upregulated by GATA4 overexpression in both PTM cells and their culture supernatant. More importantly, the addition of 100 µM NPPB could abolish the promoting effect of Gata4 silencing on PTM cell contraction. Taken together, we suggest that the inhibitory action of GATA4 on PTM cell contraction is mediated at least partly by regulating genes belonging to smooth muscle contraction pathway (e.g. Nppb).


Assuntos
Fator de Transcrição GATA4/fisiologia , Testículo/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Peptídeo Natriurético Encefálico/metabolismo , Cultura Primária de Células , Espermatogênese , Testículo/citologia
9.
J Assist Reprod Genet ; 35(2): 229-236, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29152689

RESUMO

PURPOSE: Spermatozoa maturation, a process required for spermatozoa to acquire progressive motility and the ability to fertilize ova, primarily occurs in the caput and corpus of the epididymis. Despite considerable efforts, the factor(s) promoting epididymal sperm maturation remains unclear. Recently, WNT signaling has been implicated in epididymal sperm maturation. METHODS: To further investigate WNT signaling function in epididymal sperm maturation, we generated Wntless conditional knockout mice (Wls cKO), Wls flox/flox ; Lcn5-Cre. RESULTS: In these mice, WNTLESS (WLS), a conserved membrane protein required for all WNT protein secretion, was specifically disrupted in the principal cells of the caput epididymidis. Immunoblot analysis showed that WLS was significantly reduced in the caput epididymidis of Wls cKO mice. In the caput epididymidis of Wls cKO mice, WNT 10A and WNT 2b, which are typically secreted by the principal cells of the caput epididymis, were not secreted. Interestingly, sperm motility analysis showed that the WLS deficiency in the caput epididymidis had no effect on sperm motility. Moreover, fertility tests showed that Wls cKO male mice had normal fertility. CONCLUSION: These results indicate that the disruption of WLS in principal cells of the caput epididymidis inhibits WNT protein secretion but has no effect on sperm motility and male fertility, suggesting that WNT signaling in the caput epididymidis may be dispensable for epididymal sperm maturation in mice.


Assuntos
Epididimo/citologia , Maturação do Esperma/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Epididimo/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Taxa de Gravidez , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Motilidade dos Espermatozoides , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
10.
Reproduction ; 154(5): 615-625, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28982932

RESUMO

Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.


Assuntos
Apoptose/genética , Diferenciação Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Espermatogônias/fisiologia , Animais , Células Cultivadas , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Espermatogênese/genética
11.
Biol Reprod ; 94(2): 42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26792939

RESUMO

Testis cords, embryonic precursors of the seminiferous tubules, are fundamental for testis structure and function. Delay or disruption of testis cord formation could result in gonadal dysgenesis. Although mechanisms regulating testis cord formation during sex determination have been well-studied, the genes and signaling pathways involving in testis cord maintenance after the cords have formed are not well characterized. It is now clear that the maintenance of cord structure is an active process. In this review, we summarize the recent findings regarding the regulation of testis cord integrity by a series of Sertoli cell transcription factors, including the WT1-SOX8/SOX9-beta-CATENIN-DHH network, GPR56, STIM1, and NR0B1 (also known as DAX1). In particularly, we emphasize the underappreciated role of peritubular myoid cells in testis cord maintenance and their cooperation with Sertoli cells. The regulation of the size, shape, and number of testis cords by Sertoli cell proliferation (e.g., SMAD4, GATA4, and TGF-beta signaling), Leydig cell products (e.g., ACTIVIN A), vascular development (a lesson learned from PDGF signaling), and available gonad space (as observed in Ift144 mutant mice) is also addressed. Further efforts and new genetic models are needed to unveil the gene networks and underlying mechanisms regulating testis cord integrity and morphology after sex determination.


Assuntos
Desenvolvimento Embrionário/genética , Túbulos Seminíferos/embriologia , Transdução de Sinais/genética , Cordão Espermático/embriologia , Animais , Masculino , Camundongos , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9/metabolismo , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Cordão Espermático/metabolismo , Proteínas WT1 , beta Catenina/metabolismo
12.
Mol Reprod Dev ; 83(7): 615-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27265621

RESUMO

SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFß) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fertilidade/fisiologia , Proteína Smad4/metabolismo , Espermatogênese/fisiologia , Testículo/crescimento & desenvolvimento , Animais , Deleção de Genes , Masculino , Camundongos , Camundongos Transgênicos , Proteína Smad4/genética
13.
J Pineal Res ; 60(4): 435-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993286

RESUMO

Promotion of spermatogonial stem cell (SSC) differentiation into functional sperms under in vitro conditions is a great challenge for reproductive physiologists. In this study, we observed that melatonin (10(-7) M) supplementation significantly enhanced the cultured SSCs differentiation into haploid germ cells. This was confirmed by the expression of sperm special protein, acrosin. The rate of SSCs differentiation into sperm with melatonin supplementation was 11.85 ± 0.93% which was twofold higher than that in the control. The level of testosterone, the transcriptions of luteinizing hormone receptor (LHR), and the steroidogenic acute regulatory protein (StAR) were upregulated with melatonin treatment. At the early stage of SSCs culture, melatonin suppressed the level of cAMP, while at the later stage, it promoted cAMP production. The similar pattern was observed in testosterone content. Expressions for marker genes of meiosis anaphase, Dnmt3a, and Bcl-2 were upregulated by melatonin. In contrast, Bax expression was downregulated. Importantly, the in vitro-generated sperms were functional and they were capable to fertilize oocytes. These fertilized oocytes have successfully developed to the blastula stage.


Assuntos
Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Melatonina/farmacologia , Espermatogênese/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Injeções de Esperma Intracitoplásmicas/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
14.
Reproduction ; 149(4): R159-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25504872

RESUMO

Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.


Assuntos
Meiose/fisiologia , Células de Sertoli/fisiologia , Espermatócitos/fisiologia , Espermatogênese/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Humanos , Masculino , Células de Sertoli/citologia , Transdução de Sinais , Espermatócitos/citologia , Espermatogônias/metabolismo , Células-Tronco/metabolismo
15.
Reproduction ; 147(1): 45-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129152

RESUMO

Spermatogenesis is a complex process involving the regulation of multiple cell types. As the only somatic cell type in the seminiferous tubules, Sertoli cells are essential for spermatogenesis throughout the spermatogenic cycle. The Wilms tumor gene, Wt1, is specifically expressed in the Sertoli cells of the mouse testes. In this study, we demonstrated that Wt1 is required for germ cell differentiation in the developing mouse testes. At 10 days post partum, Wt1-deficient testes exhibited clear meiotic arrest and undifferentiated spermatogonia accumulation in the seminiferous tubules. In addition, the expression of claudin11, a marker and indispensable component of Sertoli cell integrity, was impaired in Wt1(-/flox); Cre-ER(TM) testes. This observation was confirmed in in vitro testis cultures. However, the basal membrane of the seminiferous tubules in Wt1-deficient testes was not affected. Based on these findings, we propose that Sertoli cells' status is affected in Wt1-deficient mice, resulting in spermatogenesis failure.


Assuntos
Meiose/fisiologia , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Proteínas WT1/metabolismo , Animais , Claudinas/genética , Claudinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas WT1/genética
17.
BMC Biol ; 11: 22, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497137

RESUMO

BACKGROUND: The directional migration and the following development of primordial germ cells (PGCs) during gonad formation are key steps for germline development. It has been proposed that the interaction between germ cells and genital ridge (GR) somatic cells plays essential roles in this process. However, the in vivo functional requirements of GR somatic cells in germ cell development are largely unknown. RESULTS: Wt1 mutation (Wt1(R394W/R394W)) results in GR agenesis through mitotic arrest of coelomic epitheliums. In this study, we employed the GR-deficient mouse model, Wt1(R394W/R394W), to investigate the roles of GR somatic cells in PGC migration and proliferation. We found that the number of PGCs was dramatically reduced in GR-deficient embryos at embryonic day (E) 11.5 and E12.5 due to decreased proliferation of PGCs, involving low levels of BMP signaling. In contrast, the germ cells in Wt1(R394W/R394W) embryos were still mitotically active at E13.5, while all the germ cells in control embryos underwent mitotic arrest at this stage. Strikingly, the directional migration of PGCs was not affected by the absence of GR somatic cells. Most of the PGCs reached the mesenchyme under the coelomic epithelium at E10.5 and no ectopic PGCs were noted in GR-deficient embryos. However, the precise positioning of PGCs was disrupted. CONCLUSIONS: Our work provides in vivo evidence that the proliferation of germ cells is precisely regulated by GR somatic cells during different stages of gonad development. GR somatic cells are probably dispensable for the directional migration of PGCs, but they are required for precise positioning of PGCs at the final step of migration.


Assuntos
Movimento Celular , Células Germinativas/citologia , Gônadas/citologia , Gônadas/embriologia , Animais , Comunicação Celular , Contagem de Células , Proliferação de Células , Quimiocina CXCL12/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Integrina beta1/metabolismo , Masculino , Camundongos , Mitose , Mutação/genética , Processos de Determinação Sexual , Fator de Células-Tronco/metabolismo , Proteínas WT1/genética
18.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573307

RESUMO

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
19.
Biol Reprod ; 88(3): 56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325811

RESUMO

Wt1 is specifically expressed in Sertoli cells in the developing testis. A previous study has demonstrated that Wt1 plays a critical role in maintaining the integrity of testicular cords. However, the underlying mechanism is unclear. In this study, we found that the laminin-positive basal lamina lining the testicular cords was fragmented and completely absent in some areas of Wt1(-/flox); Amh-Cre testes, indicating that the testicular cord disruption can be attributed to the breakdown of the basement membrane. To explore the molecular mechanism underlying this effect, we examined the expression of cell adhesion molecules (CAMs) and testicular cord basal lamina components by real-time RT-PCR, Western blotting, and immunostaining. Compared with control testes, the expression of CAMs (such as E-cadherin, N-cadherin, claudin11, occludin, beta-catenin, and ZO-1) was not obviously altered in Wt1(-/flox); Amh-Cre testes. However, the mRNA level of Col4a1 and Col4a2 was significantly decreased in Wt1-deficient testes. Immunostaining assays further confirmed that the collagen IV protein levels were dramatically reduced in Wt1(-/flox); Amh-Cre testes. Moreover, luciferase and point mutation analyses revealed that the Col4a1 and Col4a2 promoters were additively transactivated by WT1 and SOX9. Given this finding and previous results showing that SOX9 expression declines rapidly after Wt1 deletion, we conclude that the loss of Wt1 in Sertoli cells results in the downregulation of the important basal lamina component, which in turn causes the breakdown of the basal lamina and subsequent testicular cord disruption.


Assuntos
Colágeno Tipo IV/metabolismo , Genes do Tumor de Wilms , Cordão Espermático/embriologia , Testículo/metabolismo , Animais , Membrana Basal/fisiologia , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/metabolismo , Testículo/embriologia , Ativação Transcricional
20.
Biol Reprod ; 89(1): 12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23759306

RESUMO

Scrotal hypothermia is essential for normal spermatogenesis, and temporal heat stress causes a reversible disruption of the blood-testis barrier (BTB). Previous studies have shown that AR expression in primary monkey Sertoli cells (SCs) was dramatically reduced after temporary heat treatment. However, the mechanisms underlying the heat-induced reversible disruption of the BTB, including whether it is directly regulated by the AR, remain largely unknown. In this study, we demonstrated that the AR acts upstream to regulate the heat-induced reversible change in the BTB in mice. When the AR was overexpressed in SCs using an adenovirus, the heat stress-induced down-regulation of BTB-associated proteins (Zonula occludens-1 (ZO-1), N-Cadherin, E-Cadherin, α-Catenin, and ß-Catenin) was partially rescued. AR knockdown by RNAi or treatment with flutamide (an AR antagonist) in SCs inhibited the recovery of BTB-associated protein expression after 43°C heat treatment for 30 min. The results of an in vivo AR antagonist injection experiment further showed that the recovery of BTB permeability induced by temporal heat stress was regulated by the AR. Furthermore, we observed that the co-localization and interactions of partitioning-defective protein (Par) 6-Par3-aPKC-Cdc42 polarity complex components were disrupted in both AR-knockdown and heat-induced SCs. AR overexpression in SCs prevented the disruption of these protein-protein interactions after heat treatment. AR knockdown or treatment with flutamide in SCs inhibited the restoration of these protein-protein interactions after heat treatment compared with heat treatment alone. Together, these results demonstrate that the AR plays a crucial role in the heat-induced reversible change in BTB via the Par polarity complex.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa