Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Transl Med ; 21(1): 418, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370092

RESUMO

BACKGROUND: RP11-296E3.2 is a novel long noncoding RNA (lncRNA) associated with colorectal cancer (CRC) metastasis, that was reported in our previous clinical studies. However, the mechanisms of RP11-296E3.2 in colorectal tumorigenesis remain elusive. METHODS: RNA sequencing (RNA-seq), Fluorescence in situ hybridization (FISH), Transwell assays and others, were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vitro. In situ and metastatic tumor models were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vivo. RNA-pulldown, RNA-interacting protein immunoprecipitation (RIP), tissue microarray (TMA) assay, a luciferase reporter assay, chromatin immunoprecipitation (ChIP) and others were performed to explore the mechanisms by which RP11-296E3.2 regulates CRC tumorigenesis. RESULTS: RP11-296E3.2 was confirmed to be associated with CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, RP11-296E3.2 directly bound to recombinant Y-Box Binding Protein 1 (YBX1) and enhanced signal transducer and activator of transcription 3 (STAT3) transcription and phosphorylation. YBX1 promoted the CRC cell proliferation and migration, while knockdown of RP11-296E3.2 attenuated the effects of YBX1 on CRC cell proliferation, and metastasis and the expression of several related downstream genes. We are the first to discover and confirm the existence of the YBX1/STAT3 pathway, a pathway dependent on RP11-296E3.2. CONCLUSION: Together, these novel findings show that the RP11-296E3.2/YBX1 pathway promotes colorectal tumorigenesis and progression by activating STAT3 transcription and phosphorylation, and suggest that RP11-296E3.2 is a potential diagnostic biomarker and therapeutic target in CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Hibridização in Situ Fluorescente , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , RNA , Proliferação de Células , Chaperonas Moleculares/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Movimento Celular/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
2.
BMC Pulm Med ; 23(1): 478, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031059

RESUMO

BACKGROUND: Accurate prediction of acute exacerbation helps select patients with chronic obstructive pulmonary disease (COPD) for individualized therapy. The potential of lymphocyte subsets to function as clinical predictive factors for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains uncertain. METHODS: In this single-center prospective cohort study with a 2-year follow-up, 137 patients aged 51 to 79 with AECOPD were enrolled. We examined the prognostic indicators of AECOPD by analyzing lymphocyte subsets and baseline symptom score. Furthermore, a predictive model was constructed to anticipate the occurrence of respiratory failure in patients experiencing AECOPD. RESULTS: The COPD Assessment Test (CAT) score combined with home oxygen therapy and CD4+CD8+ T cells% to predict respiratory failure in AECOPD patients were the best (the area under the curves [AUC] = 0.77, 95% CI: 0.70-0.86, P < 0.0001, sensitivity: 60.4%, specificity: 86.8%). The nomogram model, the C index, calibration plot, decision curve analysis, and clinical impact curve all indicate the model's good predictive performance. The observed decrease in the proportions of CD4+CD8+ T cells appears to be correlated with more unfavorable outcomes. CONCLUSIONS: The nomogram model, developed to forecast respiratory failure in patients with AECOPD, utilizing variables such as home oxygen therapy, CAT score, and CD4+CD8+ T cells%, demonstrated a high level of practicality in clinical settings. CD4+CD8+ T cells serve as a reliable and readily accessible predictor of AECOPD, exhibiting greater stability compared to other indices. It is less susceptible to subjective influences from patients or physicians. This model facilitated personalized estimations, enabling healthcare professionals to make informed decisions regarding preventive interventions.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Insuficiência Respiratória , Humanos , Estudos Prospectivos , Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Oxigênio/uso terapêutico , Progressão da Doença
3.
Proc Natl Acad Sci U S A ; 117(9): 4770-4780, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071245

RESUMO

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial-mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Fatores de Transcrição/metabolismo , Animais , Dedos de Zinco CYS2-HIS2 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Mutação , Metástase Neoplásica/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
4.
Small ; 18(24): e2201628, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561074

RESUMO

Flexible transparent energy supplies are extremely essential to the fast-growing flexible electronic systems. However, the general developed flexible transparent energy storage devices are severely limited by the challenges of low energy density, safety issues, and/or poor compatibility. In this work, a freestanding 3D hierarchical metallic micromesh with remarkble optoelectronic properties (T = 89.59% and Rs = 0.23 Ω sq-1 ) and super-flexibility is designed and manufactured for flexible transparent alkaline zinc batteries. The 3D Ni micromesh supported Cu(OH)2 @NiCo bimetallic hydroxide flexible transparent electrode (3D NM@Cu(OH)2 @NiCo BH) is obtained by a combination of photolithography, chemical etching, and electrodeposition. The negative electrode is constructed by electrodeposition of electrochemically active zinc on the surface of Ni@Cu micromesh (Ni@Cu@Zn MM). The metallic micromesh with 3D hierarchical nanoarchitecture can not only ensure low sheet resistance, but also realize high mass loading of active materials and short electron/ion transmission path, which can guarantee high energy density and high-rate capability of the transparent devices. The flexible transparent 3D NM@Cu(OH)2 @NiCo BH electrode realizes a specific capacity of 66.03 µAh cm-2 at 1 mA cm-2 with a transmittance of 63%. Furthermore, the assembled solid-state NiCo-Zn alkaline battery exhibits a desirable energy density/power density of 35.89 µWh cm-2 /2000.26 µW cm-2 with a transmittance of 54.34%.

5.
Exp Cell Res ; 407(2): 112826, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508742

RESUMO

INTS6 (integrator complex subunit 6) has been reported as a tumor suppressor in many cancers. However, the expression and biological function of INTS6 in colorectal cancer (CRC) has not been investigated yet. In this study, we found that INTS6 expression was significantly increased in CRC tissues when compared with normal tissues and was associated with poor prognosis. Downregulation of INTS6 induced G1/S-phase cell cycle arrest, and markedly suppressed the growth of CRC cells and the derived tumors, while overexpression of INTS6 showed opposite effect. Mechanism study revealed that INTS6 increased the levels of phosphorylated AKT (p-AKT) and ERK (p-ERK), and the growth-promoting effect of INTS6 was inhibited by AKT and ERK inhibitors. Besides, INTS6 also affected the expression of two targets of PI3K/AKT and MAPK signaling, c-Myc and CDK2, which contributed to cell cycle alteration. Altogether, the present study has revealed the oncogenic role of INTS6 in CRC, providing a novel therapeutic target for this malignant cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Masculino , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080240

RESUMO

Prussian blue analogue (PBA), with a three-dimensional open skeleton and abundant unsaturated surface coordination atoms, attracts extensive research interest in electrochemical energy-related fields due to facile preparation, low cost, and adjustable components. However, it remains a challenge to directly employ PBA as an electrocatalyst for water splitting owing to their poor charge transport ability and electrochemical stability. Herein, the PBA/rGO heterostructure is constructed based on structural engineering. Graphene not only improves the charge transfer efficiency of the compound material but also provides confined growth sites for PBA. Furthermore, the charge transfer interaction between the heterostructure interfaces facilitates the electrocatalytic oxygen evolution reaction of the composite, which is confirmed by the results of the electrochemical measurements. The overpotential of the PBA/rGO material is only 331.5 mV at a current density of 30 mA cm-2 in 1.0 M KOH electrolyte with a small Tafel slope of 57.9 mV dec-1, and the compound material exhibits high durability lasting for 40 h.

7.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946572

RESUMO

A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An evaluation of several candidate algorithms on the main dataset revealed that the support vector regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening, using this model, identified five predicted potent inhibitors from the ZINC database comprising more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four compounds where activity against LSD1 had not previously been suggested. Thus, we performed a machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information of the molecules.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Lisina/farmacologia , Aprendizado de Máquina , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Lisina/química , Estrutura Molecular
8.
Hepatology ; 68(2): 533-546, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29506314

RESUMO

Obesity is associated with both endoplasmic reticulum (ER) stress and chronic metabolic inflammation. ER stress activates the unfolded protein response (UPR) and has been implicated in a variety of cancers, including hepatocellular carcinoma (HCC). It is unclear whether individual UPR pathways are mechanistically linked to HCC development, however. Here we report a dual role for inositol-requiring enzyme 1α (IRE1α), the ER-localized UPR signal transducer, in obesity-promoted HCC development. We found that genetic ablation of IRE1α in hepatocytes not only markedly reduced the occurrence of diethylnitrosamine (DEN)-induced HCC in liver-specific IRE1α knockout (LKO) mice when fed a normal chow (NC) diet, but also protected against the acceleration of HCC progression during high-fat diet (HFD) feeding. Irrespective of their adiposity states, LKO mice showed decreased hepatocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation, even in the face of increased hepatic apoptosis. Furthermore, IRE1α abrogation blunted obesity-associated activation of hepatic inhibitor of nuclear factor kappa B kinase subunit beta (IKKß)-nuclear factor kappa B (NF-κB) pathway, leading to reduced production of the tumor-promoting inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). Importantly, higher IRE1α expression along with elevated STAT3 phosphorylation was also observed in the tumor tissues from human HCC patients, correlating with their poorer survival rate. CONCLUSION: IRE1α acts in a feed-forward loop during obesity-induced metabolic inflammation to promote HCC development through STAT3-mediated hepatocyte proliferation. (Hepatology 2018).


Assuntos
Carcinoma Hepatocelular/metabolismo , Endorribonucleases/metabolismo , Neoplasias Hepáticas/metabolismo , Obesidade/complicações , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Citocinas/metabolismo , Dieta Hiperlipídica , Dietilnitrosamina/farmacologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/veterinária , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
9.
Biochem Biophys Res Commun ; 482(4): 1048-1053, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27908734

RESUMO

Metabolic dysregulation is one of the most common and recognizable features of cancer. Triosephosphate isomerase 1 (TPI1), which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde-3-phosphate (G3P) during glycosis and gluconeogenesis, is a crucial enzyme in the carbohydrate metabolism. However, the biological function and mechanism of TPI1 in cancer remain largely unknown. In this study, we have found that TPI1 expression was greatly decreased in clinical HCC samples, positively correlated with overall survival, and negatively associated with histological differentiation, tumor size and organ metastasis. Forced expression of TPI1 in HCC cells inhibited cell growth, migration, and invasion in vitro. Consistently, knockdown of TPI1 by shRNA promoted cell growth, migration and invasion. Moreover, overexpression of TPI1 led to slowed tumor growth and decreased tumor weight in vivo. Furthermore, cell cycle arrest was induced by TPI1 overexpression. These phenotypes were associated with altered expression of ß-catenin, Vimentin, P53, P27 and CyclinD1. Therefore, our data suggested that TPI1 functioned as a tumor suppressor in HCC and might serve as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Triose-Fosfato Isomerase/metabolismo , Idoso , Animais , Carcinogênese , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Vimentina/metabolismo , beta Catenina/metabolismo
10.
Hepatology ; 62(6): 1791-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26257239

RESUMO

UNLABELLED: Sorafenib is a specific adenosine triphosphate-competitive RAF inhibitor used as a first-line treatment of advanced hepatocellular carcinoma (HCC). However, the responses are variable, reflecting heterogeneity of the disease, while the resistance mechanism remains poorly understood. Here, we report that sorafenib treatment can exacerbate disease progression in both patient-derived xenografts and cell line-derived xenografts and that the therapeutic effect of the drug inversely covaries to the ratio of epithelial cell adhesion molecule-positive cells, which may be tumor initiating cells in HCC. The TSC2-AKT cascade mediates this sorafenib resistance. In response to sorafenib treatment, formation of the TSC1/2 complex is enhanced, causing increased phosphorylation of AKT, which contributes to up-regulation of "stemness"-related genes in epithelial cell adhesion molecule-positive cells and enhancement of tumorigenicity. The expression of TSC2 negatively correlated with prognosis in clinical sorafenib therapy. Furthermore, all-trans retinoic acid decreased AKT activity, reduced the epithelial cell adhesion molecule-positive cell population enriched by sorafenib, and potentiated the therapeutic effect of sorafenib in the patient-derived xenograft model. CONCLUSION: Our findings suggest that a subtype of HCC is not suitable for sorafenib therapy; this resistance to sorafenib can be predicted by the status of TSC2, and agents inducing differentiation of tumor initiating cells (e.g., all-trans retinoic acid) should improve the prognosis of this subtype of HCC.


Assuntos
Antígenos de Neoplasias/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/induzido quimicamente , Moléculas de Adesão Celular/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Células-Tronco Neoplásicas/efeitos dos fármacos , Niacinamida/análogos & derivados , Proteína Oncogênica v-akt/fisiologia , Compostos de Fenilureia/efeitos adversos , Proteínas Supressoras de Tumor/fisiologia , Animais , Carcinoma Hepatocelular/classificação , Progressão da Doença , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Hepáticas/classificação , Camundongos , Niacinamida/efeitos adversos , Sorafenibe , Proteína 2 do Complexo Esclerose Tuberosa
11.
J Imaging ; 10(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921613

RESUMO

We introduce an emotional stimuli detection task that targets extracting emotional regions that evoke people's emotions (i.e., emotional stimuli) in artworks. This task offers new challenges to the community because of the diversity of artwork styles and the subjectivity of emotions, which can be a suitable testbed for benchmarking the capability of the current neural networks to deal with human emotion. For this task, we construct a dataset called APOLO for quantifying emotional stimuli detection performance in artworks by crowd-sourcing pixel-level annotation of emotional stimuli. APOLO contains 6781 emotional stimuli in 4718 artworks for validation and testing. We also evaluate eight baseline methods, including a dedicated one, to show the difficulties of the task and the limitations of the current techniques through qualitative and quantitative experiments.

12.
Clin Exp Med ; 23(8): 5161-5176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37328656

RESUMO

Autoimmunity is present in patients with stable chronic obstructive pulmonary disease (COPD), playing a role in indirect and direct ways. We aimed to explore whether autoimmunity could play a role in COPD exacerbations and construct autoimmunity-related prediction models. This prospective, longitudinal, observational cohort study enrolled 155 patients with acute COPD exacerbations (AECOPD) followed for at least two years. The laboratory parameters, including complete blood count, serum immunoglobulins G/A/M and complement C3/C4 levels, were collected at enrollment. We studied the demographic characteristics, clinical characteristics and laboratory parameters to identify independent risk factors and build predictive models. The results showed that lower lymphocyte count was associated with noninvasive ventilation (NIV) in patients with AECOPD (the odds ratio [OR] 0.25, the 95% confidence interval [CI]: 0.08-0.81, P = 0.02). Lymphocyte count performed well with an area under the curves (AUC) of 0.75 (P < 0.0001, sensitivity: 78.1%, specificity: 62.3%, cutoff value [Cov] ≤ 1.1). The C index, calibration plot, decision curve analysis (DCA) and bootstrap repetitions indicated that this clinical prediction model based on lymphocyte count for NIV in patients with AECOPD performed well. Having prior home oxygen therapy (OR: 2.82, 95% CI: 1.25-6.36, P = 0.013) and higher COPD Assessment Test (CAT) scores (OR: 1.14, 95% CI: 1.03-1.25, P = 0.011) were associated with the increased risk for respiratory failure. For predicting respiratory failure, CAT scores and home oxygen therapy combined had an AUC-ROC of 0.73 (P < 0.0001). This clinical prediction model based on lymphocyte count may help to assist in treatment decisions for NIV in patients with AECOPD. Lower complement C3 seems to be associated with worse outcomes in patients with AECOPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Insuficiência Respiratória , Humanos , Estudos Prospectivos , Seguimentos , Complemento C3 , Modelos Estatísticos , Progressão da Doença , Prognóstico , Contagem de Células Sanguíneas , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Insuficiência Respiratória/complicações , Imunoglobulinas , Oxigênio
13.
Mol Oncol ; 17(4): 695-709, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453019

RESUMO

There is no targeted therapy for KRAS proto-oncogene, GTPase (KRAS)-mutant metastatic colorectal cancer (mCRC) because the underlying mechanism remains obscure. Based on bioinformatic analysis, this study aims to elucidate a potential gene target for which an approved drug is available, and to reveal the function as well as the underlying mechanism of the candidate gene. Here, we identified that ryanodine receptor 2 (RyR2) expression was upregulated in KRAS-mutant mCRC, and that this promoted cancer cell metastasis. S107, an approved drug to inhibit calcium release from RyR2 in the clinic, inhibited cancer cell metastasis both in vitro and in vivo. High expression of RyR2 predicts poor survival in our patient cohort. CRC patients with serosa invasion and vascular tumor thrombus are characterized by high RyR2 expression. Analysis of expression profiles upon RyR2 knockdown and inhibition, revealed a set of metastasis-related molecules, and identified BTB domain and CNC homolog 1 (BACH1) as the main transcription factor regulated by RyR2. RyR2 regulates cellular reactive oxygen species (ROS) levels, which activates nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2) and HMOX1 expression, and thus BACH1 accumulation. Collectively, this study provides evidence that the RyR2/ROS/BACH1 axis may be a potential intervention target for CRC metastasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Domínio BTB-POZ , Neoplasias Colorretais/patologia , Metástase Neoplásica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
14.
Cancer Rep (Hoboken) ; 6(9): e1855, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381647

RESUMO

BACKGROUND: Esophageal neuroendocrine carcinoma (NEC) is a rare cancer with an extremely poor prognosis. The average overall survival of patients with metastatic disease is only 1 year. The efficacy of anti-angiogenic agents combined with immune checkpoint inhibitors remains unknown. CASE PRESENTATION: A 64-year-old man, initially diagnosed with esophageal NEC, underwent neoadjuvant chemotherapy and esophagectomy. Although the patient remained disease-free for 11 months, eventually the tumor progressed and did not respond to three lines of combined therapy (etoposide plus carboplatin with local radiotherapy, albumin-bound paclitaxel plus durvalumab, and irinotecan plus nedaplatin). The patient then received anlotinib plus camrelizumab, and a dramatic regression was observed (confirmed by positron emission tomography-computed tomography). The patient has been disease-free for over 29 months and has survived for over 4 years since diagnosis. CONCLUSION: Combined therapy with anti-angiogenic agents and immune checkpoint inhibitors may be a promising strategy for esophageal NEC, although more evidence is warranted to validate its efficacy.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Esofágicas , Masculino , Humanos , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/patologia , Carboplatina/uso terapêutico , Carcinoma Neuroendócrino/patologia
15.
J Phys Chem Lett ; 14(49): 10863-10869, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38032733

RESUMO

Solid electrolyte interphase (SEI) is regarded as a key factor to enable high power outputs of Lithium-ion batteries (LIBs). Herein, we demonstrate a modified electrolyte consisting of a novel electrolyte additive, 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (FTMS) to construct a highly robust and stable SEI on a graphite anode for LIBs to enhance its rate performance. With 2% FTMS, the anode presents an improved capacity retention from 77.6 to 91.2% at 0.5 C after 100 cycles and an improved capacity from 86 to 229 mAh g-1 at 2 C. Experimental characterizations and theoretical calculations reveal that FTMS is preferentially absorbed and reduced on graphite to construct an interface chemistry with uniform fluoride-containing organic lithium salt and silicon-containing polymer, which exhibits high flexibility and conductivity and endows the SEI with high robustness and stability. This work provides an effective way to address the issue of slow lithium insertion/desertion kinetics of graphite anodes.

16.
Cell Death Differ ; 30(4): 1033-1046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739334

RESUMO

Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eµ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.


Assuntos
Genes p53 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Mutação
17.
Cell Death Differ ; 30(2): 383-396, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36396719

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem. However, the complicated pathogenesis of NAFLD contributes to the deficiency of effective clinical treatment. Here, we demonstrated that liver-specific loss of Arid2 induced hepatic steatosis and this progression could be exacerbated by HFD. Mechanistic study revealed that ARID2 repressed JAK2-STAT5-PPARγ signaling pathway by promoting the ubiquitination of JAK2, which was mediated by NEDD4L, a novel E3 ligase for JAK2. ChIP assay revealed that ARID2 recruited CARM1 to increase H3R17me2a level at the NEDD4L promoter and activated the transcription of NEDD4L. Moreover, inhibition of Jak2 by Fedratinib in liver-specific Arid2 knockout mice alleviated HFD-induced hepatic steatosis. Downregulation of ARID2 and the reverse correlation between ARID2 and JAK2 were also observed in clinical samples. Therefore, our study has revealed an important role of ARID2 in the development of NAFLD and provided a potential therapeutic strategy for NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/metabolismo , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dieta Hiperlipídica , Ubiquitinação , Camundongos Endogâmicos C57BL
18.
Cell Rep ; 42(4): 112340, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027301

RESUMO

Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ubiquitinação
19.
Adv Sci (Weinh) ; 10(2): e2202448, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453576

RESUMO

The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1 , Neoplasias Pancreáticas
20.
Int J Oncol ; 61(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205136

RESUMO

Gefitinib is a sensitive and effective drug to treat non­small­cell lung cancer (NSCLC) carrying the somatic activating mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR). In the present study, a new mechanism of action of gefitinib in EGFR­mutated NSCLC cells was discovered using in vitro co­culture of NSCLC cells with peripheral blood mononuclear cells (PBMCs). Gefitinib significantly enhanced the cytotoxicity of PBMCs against NSCLC cells expressing mutated EGFR but not in cells expressing wild­type EGFR. Furthermore, it was observed that B7H5 expression was significantly lower in EGFR­mutant cells than in wild­type cells, while inhibition of EGFR by gefitinib or reduction in EGFR using a small interfering RNA (siRNA) both increased the expression of B7H5 in EGFR­mutated NSCLC cells. In addition, when B7H5 expression was reduced by siRNA, the toxic effect of gefitinib was reduced in the co­culture of PBMCs and EGFR­mutant NSCLC cells. In addition, the siRNA­mediated decrease in expression of the B7H5 receptor CD28H in PBMCs also reduced the toxicity of gefitinib on EGFR­mutated NSCLC. Based on these results, it may be proposed that the B7H5/CD28H axis is involved in NSCLC­mediated immunosuppression when EGFR is overactivated. Gefitinib actively inhibits mutated EGFR, which induces B7H5 expression on the cell surface of NSCLC cells, thereby activating CD28H signaling in immune cells, followed by enhanced cytotoxicity against NSCLC. The present study not only provided new insight into the immune evasion mechanism mediated by EGFR mutations but also identified new targets for immune therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Imunidade , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , RNA Interferente Pequeno/farmacologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa