Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 9(3): 171-176, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541355

RESUMO

Designing multitarget-directed ligands (MTDLs) is considered to be a promising approach to address complex and multifactorial maladies such as Alzheimer's disease (AD). The concurrent inhibition of the two crucial AD targets, glycogen synthase kinase-3ß (GSK-3ß) and human acetylcholinesterase (hAChE), might represent a breakthrough in the quest for clinical efficacy. Thus, a novel family of GSK-3ß/AChE dual-target inhibitors was designed and synthesized. Among these hybrids, 2f showed the most promising profile as a nanomolar inhibitor on both hAChE (IC50 = 6.5 nM) and hGSK-3ß kinase activity (IC50 = 66 nM). It also showed good inhibitory effect on ß-amyloid self-aggregation (inhibitory rate = 46%) at 20 µM. Western blot analysis revealed that compound 2f inhibited hyperphosphorylation of tau protein in mouse neuroblastoma N2a-Tau cells. In vivo studies confirmed that 2f significantly ameliorated the cognitive disorders in scopolamine-treated ICR mice and less hepatotoxicity than tacrine. This study provides new leads for assessment of GSK-3ß and AChE pathway dual inhibition as a promising strategy for AD treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa