Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401831, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733226

RESUMO

Quasi-2D perovskites have attracted much attention in perovskite photovoltaics due to their excellent stability. However, their photoelectric conversion efficiency (PCE) still lags 3D counterparts, particularly with high short-circuit current (JSC) loss. The quantum confinement effect is pointed out to be the sole reason, which introduces widened bandgap and poor exciton dissociation, and undermines the light capture and charge transport. Here, the gradient incorporation of formamidinium (FA) cations into quasi-2D perovskite is proposed to address this issue. It is observed that FA prefers to incorporate into the larger n value phases near the film surface compared to the smaller n value phases in the bulk, resulting in a narrow bandgap and gradient structure within the film. Through charge dynamic analysis using in situ light-dark Kelvin probe force microscopy and transient absorption spectroscopy, it is demonstrated that incorporating 10% FA significantly facilitates efficient charge transfer between low n-value phases in the bulk and high n-value nearby film surface, leading to reduced charge accumulation. Ultimately, the device based on (AA)2(MA0.9FA0.1)4Pb5I16, where AA represents n-amylamine renowned for its exceptional environmental stability as a bulky organic ligand, achieves an impressive power conversion efficiency (PCE) of 18.58% and demonstrates enhanced illumination and thermal stability.

2.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612047

RESUMO

The phase segregation of wide-bandgap perovskite is detrimental to a device's performance. We find that Sodium Benzenesulfonate (SBS) can improve the interface passivation of PTAA, thus addressing the poor wettability issue of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA). This improvement helps mitigate interface defects caused by poor contact between the perovskite and PTAA, reducing non-radiative recombination. Additionally, enhanced interface contact improves the crystallinity of the perovskite, leading to higher-quality perovskite films. By synergistically controlling the crystallization and trap passivation to reduce the phase segregation, SBS-modified perovskite solar cells (PSCs) achieved a power conversion efficiency (PCE) of 20.27%, with an open-circuit voltage (Voc) of 1.18 V, short-circuit current density (Jsc) of 20.93 mA cm-2, and fill factor (FF) of 82.31%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa