RESUMO
As a traditional Chinese medicine, Chinese dragon's blood has multiple effects, such as activating blood to remove blood stasis, softening and dispelling stagnation, astringent and hemostasis, clearing swelling and relieving pain, regulating menstruation and rectifying the blood, so it is called "an effective medicine of promoting blood circulation". It has been widely used clinically to treat a variety of diseases. With the further research on Chinese dragon's blood, its anti-tumor medicinal value is gradually emerging. Modern pharmacological studies have shown that Chinese dragon's blood exerts anti-tumor effects mainly by inhibiting cell proliferation, inducing apoptosis, inducing DNA damage and cell cycle arrest, inducing senescence and autophagy of tumor cells, inhibiting metastasis and angiogenesis, as well as reversing multidrug resistance. This article focuses on the research progress on anti-tumor effects of Chinese dragon's blood extract and its chemical components, with a view to provide new references for the in-depth research and reasonable utilization of Chinese dragon's blood.
Assuntos
Dracaena , China , Feminino , Extratos Vegetais , Resinas VegetaisRESUMO
The design and construction of highly efficient and stable Pt-free catalysts for the electrocatalytic hydrogen evolution reaction (HER) in alkaline media is extremely desirable. Herein, a novel hybrid of ruthenium (Ru) nanoparticles anchored on graphene hollow nanospheres (GHSs) is synthesized by a template-assisted strategy. The combination of ultrafine Ru nanoparticles and hollow spherical support endows the resultant Ru/GHSs an extraordinary catalytic performance with a low overpotential of 24.4 mV at a current density of 10 mA cm-2, a small Tafel slope of 34.8 mV dec-1, as well as long-term stability in 1.0 M KOH solution, which is, to our knowledge, superior to commercial 20% Pt-C catalyst and most of the state-of-the-art HER electrocatalysts reported. Remarkably, this work provides a new route for the development of other metal-based HER electrocatalysts for energy-related applications.
RESUMO
This study aims to investigate the effect of Huaier aqueous extract on the growth and metastasis of human non-small cell lung cancer NCI-H1299 cells and its underlying mechanisms. MTT assay was used to detect the effect of Huaier aqueous extract on the proliferation of NCI-H1299 cells. Flow cytometry was used to examine the effect of Huaier aqueous extract on the apoptosis, cell cycle, and ROS level of NCI-H1299 cells. Wound healing assay was used to evaluate the effect of Huaier aqueous extract on the migration ability of NCI-H1299 cells. Western blot was used to detect the levels of proteins involving apoptosis, epithelial-mesenchymal transition(EMT), and MAPK signaling pathway in NCI-H1299 cells exposed to Huaier aqueous extract. The results showed that Huaier aqueous extract inhibited the proliferation of NCI-H1299 cells, and induced cell-cycle arrest at the phase S. Huaier aqueous extract promoted the apoptosis of NCI-H1299 cells by down-regulating the expression of anti-apoptotic protein Bcl-2. Moreover, Huaier aqueous extract increased ROS level and induced ferroptosis in NCI-H1299 cells. EMT played a critical role in cancer metastasis. Huaier aqueous extract reduced the migration ability of NCI-H1299 cells by inhibiting EMT of NCI-H1299 cells. In addition, this study revealed that Huaier aqueous extract inhibited MAPK signaling pathway in human non-small cell lung cancer NCI-H1299 cells, which may be one of Huaier's mechanisms in inhibiting growth and metastasis of NCI-H1299 cells. This study provides a new theoretical basis for the clinical treatment of lung cancer with Huaier, and important reference significance for further studies on the anti-tumor mechanisms of Huaier.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Misturas Complexas , Humanos , TrametesRESUMO
OBJECTIVE: To describe a novel technique for clampless and sutureless laparoscopic partial nephrectomy (LPN) using monopolar coagulation with or without N-butyl-2-cyanoacrylate (NBCA). METHODS: From February 2015 to October 2018, we performed clampless and sutureless LPN using monopolar coagulation with or without NBCA on 142 patients. The tumors were resected with cold scissor. The tumor beds were repeatedly coagulated with a monopolar hook in spray and fulgurate modes. NBCA was sprayed when bleeding was observed after coagulation in 98 patients. We compared outcomes in the NBCA and non-NBCA groups. RESULTS: Mean patient age was 55 years (range 20-86). Mean tumor size was 3.2 cm (range 1.0-10.6). Mean RENAL nephrometry score was 5 (range 4-8). Mean operative time was 120 min (range 40-200). Mean estimated blood loss was 100 ml (range 10-500). Mean eGFR changes were 2.3 ml/min. Two patients had positive surgical margins. Three patients received blood transfusions. No patients had urine leakage. Patients receiving NBCA had larger tumors (3.0 vs 2.0 cm, p < 0.001), higher RENAL nephrometry scores (5.59 vs 4.47, p = 0.004), and higher E item scores (p = 0.009). CONCLUSIONS: Use of monopolar coagulation with NBCA in clampless and sutureless LPN for renal tumors with low RENAL nephrometry scores is safe and effective. For patients with exophytic renal tumors less than 2 cm, NBCA is not necessary.
Assuntos
Eletrocoagulação , Embucrilato/química , Neoplasias Renais/cirurgia , Laparoscopia/métodos , Nefrectomia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
The single-factor test was used to optimize the high-pressure homogenization method to prepare the phenolic extract nanosuspensions(DBNs). The physicochemical properties of the obtained nanosuspensions were characterized and the cumulative release in vitro was evaluated. The results showed that the drug concentration was 0.5 g·L~(-1), the mass concentrations of PVPK30 and SDS were 0.5 and 0.25 g·L~(-1), respectively, the probe ultrasonic time was 5 min, the homogenization pressure was 900 bar, and the number of homogenization was 2 times. The prepared DBNs had an average particle size of(168.80±0.36) nm, polydispersity index(PDI) of 0.09±0.04, stability index(SI) of 0.85, and DBNs were stable for storage within 30 days. Scanning electron microscopy showed that the particle size of the dragon's blood extract was reduced and the uniformity was improved in the obtained nanosuspensions. X-ray diffraction pattern and differential scanning calorimetry showed that the phenolic extract of dragon's blood was still in an amorphous state after being prepared into nanosuspensions. The results of saturated solubility measurement showed that the solubility of DBNs lyophilized powder reached 6.25 g·L~(-1), while the solubility of DB raw powder was only 28.67 mg·L~(-1). The in vitro dissolution experiments showed that DBNs lyophilized powder accumulated in gastrointestinal fluid for 8 h. The release amount was 90%,the cumulative release of the raw powder in the gastrointestinal fluid for 24 h was less than 1%, and the solubility and dissolution rate of the DBNs lyophilized powder were significantly higher than the DB raw powder. The method is simple in process and convenient in operation, and can successfully prepare uniform and stable nanosuspensions to improve its solubility, and provides a research basis for solving the application limitation of dragon's blood extract.
Assuntos
Nanopartículas , Extratos Vegetais/química , Varredura Diferencial de Calorimetria , Tamanho da Partícula , Solubilidade , Suspensões , Difração de Raios XRESUMO
The research of anti-hepatocellular carcinoma(HCC) drug has attracted more and more attention. Natural products are the important source of active compounds for cancer treatment. A biflavonoid HIS-4 was isolated from Resina draconis in our previous study. MTT assay, hoechst staining, and flow cytometry analysis were used to investigate the effects of HIS-4 on the proliferation and apoptosis of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, the effects of HIS-4 on the migration and invasion ability of HepG2 and SK-HEP-1 cells were evaluated by wound healing assay and Transwell assay. In addition, MTT assay, flow cytometry analyses, Hoechst staining, wound healing assay, Transwell assay, and tube formation assay were used to explore the anti-angiogenic activity of HIS-4 in human umbilical vein endothelial cells(HUVECs). Mechanistically, the HIS-4 regulatory of signal pathways in H9 epG2 and SK-HEP-1 cells were analyzed by Western blot. This results showed that HIS-4 suppressed the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. Moreover HIS-4 induced their apoptosis of HepG2 and SK-HEP-1 cells. HIS-4 inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, HIS-4 exhibited angiogenesis effects. Mechanistically, up-regulation of MAPK signaling pathway and down-regulation of mTOR signaling pathway may be responsible for anti-hepatoma activity of HIS-4. Therefore, HIS-4 may be a promising candidate drug for HCC treatment.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Carcinoma Hepatocelular/patologia , Dracaena/química , Neoplasias Hepáticas/patologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Movimento Celular , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Compostos Fitoquímicos/farmacologiaRESUMO
As an important integral part of traditional Chinese medicine chemical biology( TCMCB),it is of great importance to rapid isolate,and reliably identify the chemical components in herbal medicines. Phytochemical studies on the anti-inflammatory active part of Chinese dragon's blood,the red resin of Dracaena cochinchinensis,resulted in the isolation of two compounds,nordracophane( 1) and dracophane( 2),using LC-MS and chromatographic techniques( Silica gel,ODS and preparative HPLC). The structures,cyclic dihydrochalcane trimers,were elucidated on the basis of 1 D and 2 D NMR,MS,IR and UV spectral analysis. Compound 1 is a new compound,and 2 is isolated from D. cochinchinensis for the first time. Both compounds exhibited significant inhibition of nitric oxide production in lipopolysaccharides( LPS)-stimulated RAW264. 7 cells with IC50 values of( 14. 9±4. 50) and( 9. 0±0. 7) µmol·L-1.
Assuntos
Anti-Inflamatórios/isolamento & purificação , Espectrometria de Massas , Extratos Vegetais/isolamento & purificação , Animais , Cromatografia Líquida , Dracaena , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7RESUMO
Ten fractions(A-J) were prepared by separation of Longxue Tongluo Capsules(LTC) by using silica gel column chromatography and orthogonal experimental design,showing similar chemical profiles with different abundances of peaks.These ten samples were assessed with UHPLC-QE OrbitrapHRMS for 97 common peaks.For the pharmacological activity experiment,three kinds of in vitro cell models including lipopolysaccharide(LPS)-induced BV-2 microglial cells NO release model,oxygen-glucose deprivation/reoxygenation(OGD/R)-treated HUVEC vascular endothelial cells injury model,and OGD/R-treated PC-12 nerve cells injury model were employed to evaluated the bioactivity of each fraction.Based on the contribution of each identified component,grey relation analysis and partial least squares(PLS) analysis were performed to establish component-activity relationship of LTC,identify the potential active components.After that,validation of the potential active components in LTC was carried out by using the same models.The results indicated that 4 phenolic compounds including 7,4'-dihydroxyhomoisoflavanone,loureirin C,4,4'-dihydroxy-2,6-dimethoxydihydrochalcone,and homoisosocotrin-4'-ol,might be the active components for anti-neuroinflammation effect;five phenolic compounds such as 3,5,7,4'-tetrahydroxyhomoisoflavanone,loureirin D,7,4'-dihydroxyhomoisoflavane,and 5,7-dihydroxy-4'-methoxy-8-methyflavane,might have positive effects on the vascular endothelial injury;three phenolic compounds including 5,7,4'-trihydroxyflavanone,7,4'-dihydroxy-5-methoxyhomoisoflavane,and loureirin D,might be the active components in LTC against neuronal injury.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Microglia/efeitos dos fármacos , Cápsulas , Linhagem Celular , Glucose , Humanos , OxigênioRESUMO
Ten phenylpropanoid amides were isolated from the whole plants of Corydalis edulis Maxim. by various of column chromatographies including silica gel, Sephadex LH-20, and ODS. Their structures were identified on the basis of physicochemical properties, MS, NMR, and IR spectroscopic data. These compounds were identified as N-trans-sinapoyl-3-methoxytyramine-4'-O-ß-glucoside(1), N-trans-sinapoyl-3-methoxytyramine(2), N-trans-sinapoyltyramine(3), N-trans-p-coumaroyltyramine(4), N-trans-sinapoyl-7-hydroxytyramine(5), N-cis-feruloyltyramine(6), N-cis-p-coumaroyltyramine(7), N-trans-feruloyltyramine(8), N-trans-feruloyl-3-methoxytyramine(9), and N-trans-feruloyl-7-hydroxytyramine(10). Compound 1 is a new compound. Compounds 2-7 are obtained from the plants of Papaveraceae for the first time, while compounds 8-10 are firstly isolated from C. edulis.
Assuntos
Amidas/análise , Corydalis/química , Glucosídeos/análise , Compostos Fitoquímicos/análise , Tiramina/análiseRESUMO
Bio-adhesive drug delivery system (BDDS) is a novel drug delivery system, which can prolong the retention time of the preparation, improve the stability of the drug, and improve the mucosa absorption and the targeting of the drug. With the development of polymer materials over the past 30 years, BDDS made a great progress. This paper reviews the muco-adhesion theory, adhesive materials, and methods to evaluate muco-adhesive properties and applications in traditional Chinese medicine according to domestic and foreign literatures, in order to provide new ideas for further studies.
Assuntos
Adesivos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Medicina Tradicional Chinesa , PolímerosRESUMO
To optimize the ethanol extraction process for Shenlian formula. On the basis of the pharmacodynamics index for different extraction process routes, the contents of salvianolic acid B, tanshinone â ¡A and berberine, as well as the extraction ratio in different experimental schemes were used as the ethanol extraction examining indexes, and multi-criterion synthesizing grading method was used for data analysis to optimize and verify the ethanol-extraction process conditions in orthogonal experiment. The optimum ethanol extraction process was as follows: adding 60% ethanol, 10 times amount, extracting for 2.0 h each time for a total of 2 times. This extraction process showed good stability and availability.
Assuntos
Medicamentos de Ervas Chinesas/química , Etanol , Plantas Medicinais/química , Abietanos/isolamento & purificação , Benzofuranos/isolamento & purificação , Berberina/isolamento & purificação , Tecnologia FarmacêuticaRESUMO
BACKGROUND: MiR-133b is a muscle-specific microRNA; it has a role in the formation of cardiocytes and the expression of myocardium ion channels by regulating target genes. Many human malignant tumors demonstrate a low expression of miR-133b, as noted in colorectal, lung, esophagus and bladder cancers, but the role of miR-133b in bladder cancer is unknown. METHODS: The expression of miR-133b in clinical bladder cancer specimens and adjacent normal tissues was confirmed by stem-loop RT-PCR. We also analyzed the relationship between miR-133b expression and clinicopathological factors of bladder cancer. Bcl-w and Akt1 protein expression in 41 bladder cancer specimens and adjacent normal tissues was detected by Western blot. After transfection of miR-133b mimics or inhibitor into a T24 human bladder cancer cell line, Bcl-w and Akt1 protein and mRNA expression were examined by Western blot and RT-PCR, respectively. The effect of miR-133b on T24 cell proliferation and apoptosis was measured by CCK-8 tests and flow cytometry, respectively. RESULTS: The expression of miR-133b in bladder cancer tissues from 41 patients was significantly down-regulated (P < 0.01); low expression of miR-133b was strongly associated with high-grade bladder cancer (P < 0.01). Bcl-w and Akt1 proteins were significantly overexpressed in bladder cancer tissues versus adjacent normal tissues (P < 0.01 for both). The expression of Akt1 and Bcl-w proteins and Akt1 mRNA, in T24 cells was significantly down-regulated or up-regulated after transfection of miR-133b mimics or inhibitor, respectively; however, there was no significant difference in Bcl-w mRNA expression. Transfection of HEK-293 T cells with miR-133b significantly suppressed a luciferase-reporter containing the Bcl-w or Akt 1 3'-untranslated regions. MiR-133b mimics significantly inhibited T24 cell proliferation, as well as increased T24 cell apoptosis (P < 0.05 and P < 0.01, respectively) while the miR-133b inhibitor increased and decreased these, respectively (P < 0.05 for both). CONCLUSIONS: MiR-133b may play a very important role in the proliferation and apoptosis of T24 cells by regulating the expression of Bcl-w and Akt1.
RESUMO
Accurate runoff forecasting is of great significance for water resource allocation flood control and disaster reduction. However, due to the inherent strong randomness of runoff sequences, this task faces significant challenges. To address this challenge, this study proposes a new SMGformer runoff forecast model. The model integrates Seasonal and Trend decomposition using Loess (STL), Informer's Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), and Multi-head self-attention (MHSA). Firstly, in response to the nonlinear and non-stationary characteristics of the runoff sequence, the STL decomposition is used to extract the runoff sequence's trend, period, and residual terms, and a multi-feature set based on 'sequence-sequence' is constructed as the input of the model, providing a foundation for subsequent models to capture the evolution of runoff. The key features of the input set are then captured using the Informer's Encoder layer. Next, the BiGRU layer is used to learn the temporal information of these features. To further optimize the output of the BiGRU layer, the MHSA mechanism is introduced to emphasize the impact of important information. Finally, accurate runoff forecasting is achieved by transforming the output of the MHSA layer through the Fully connected layer. To verify the effectiveness of the proposed model, monthly runoff data from two hydrological stations in China are selected, and eight models are constructed to compare the performance of the proposed model. The results show that compared with the Informer model, the 1th step MAE of the SMGformer model decreases by 42.2% and 36.6%, respectively; RMSE decreases by 37.9% and 43.6% respectively; NSE increases from 0.936 to 0.975 and from 0.487 to 0.837, respectively. In addition, the KGE of the SMGformer model at the 3th step are 0.960 and 0.805, both of which can maintain above 0.8. Therefore, the model can accurately capture key information in the monthly runoff sequence and extend the effective forecast period of the model.
RESUMO
As an important forestry pest, Coronaproctus castanopsis (Monophlebidae) has caused serious damage to the globally valuable Gutianshan ecosystem, China. In this study, we assembled the first chromosome-level genome of the female specimen of C. castanopsis by merging BGI reads, HiFi long reads and Hi-C data. The assembled genome size is 700.81 Mb, with a scaffold N50 size of 273.84 Mb and a contig N50 size of 12.37 Mb. Hi-C scaffolding assigned 98.32% (689.03 Mb) of C. Castanopsis genome to three chromosomes. The BUSCO analysis (n = 1,367) showed a completeness of 91.2%, comprising 89.2% of single-copy BUSCOs and 2.0% of multicopy BUSCOs. The mapping ratio of BGI, second-generation RNA, third-generation RNA and HiFi reads are 97.84%, 96.15%, 97.96%, and 99.33%, respectively. We also identified 64.97% (455.3 Mb) repetitive elements, 1,373 non-coding RNAs and 10,542 protein-coding genes. This study assembled a high-quality genome of C. castanopsis, which accumulated valuable molecular data for scale insects.
Assuntos
Agricultura Florestal , Genoma de Inseto , Hemípteros , Feminino , Cromossomos , Ecossistema , Filogenia , RNA , Hemípteros/genéticaRESUMO
Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.
Assuntos
Acetil-CoA Carboxilase , Neoplasias da Próstata , Humanos , Masculino , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteína Quinase CDC2 , Ácidos Graxos , Lipídeos , Metiltransferases , Proteínas Musculares , Próstata/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The antioxidative effects of κ-carrageenan oligosaccharides (CO) on the stability of proteins and lipids in mackerel fillets were determined during frozen storage. Electronic nose analysis indicated that CO treatments maintained the stability of the overall volatile flavor profiles in frozen mackerel. Protein oxidation analysis suggested that the incorporation of CO significantly retarded the rapid decrease of Ca2+-ATPase activity and active sulphydryl (A-SH) contents while also effectively inhibiting the increases in carbonyl content and surface hydrophobicity of myofibrillar proteins (MPs) compared to the control treatments. Lipid stability results showed that the peroxide values (PVs), conjugated diene (CD) content, anisidine values (AVs), and thiobarbituric acid index (TBA-i) values of the extracted lipids were also clearly reduced by CO treatments during frozen storage. Fatty acid composition determinations further confirmed that the permeated CO molecules stabilized the polyunsaturated C22:6n3 (DHA) in the lipids, most likely due to their efficient free radical scavenging activities.
RESUMO
Ultrafine Ru nanoparticles dispersed on 3D N-doped carbon hollow nanospheres were firstly prepared by a feasible templating strategy. Due to the synergistic effect of the unique composite and structure, the resulting nanocomposite as a HER catalyst shows extraordinary electrocatalytic performance, superior to that of commercial Pt-C and most previously reported electrocatalysts.
RESUMO
Two new polyketides, penicilloxalones A (1) and B (2), together with 13 known compounds (3-15), were isolated from the ethyl acetate extract of the solid substrate fermentation cultures of the fungus Penicillium oxalicum MHZ153. The structures of the isolates were determined by spectroscopic analysis and comparison of their spectroscopic and physicochemical data with the literature values. Compounds 7 and 11 showed inhibition of nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells with IC50 values of 0.9 ± 0.2 µM and 87.9 ± 0.7 µM, respectively.
Assuntos
Penicillium/química , Policetídeos/isolamento & purificação , Animais , Linhagem Celular , Fermentação , Concentração Inibidora 50 , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Policetídeos/química , Policetídeos/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dragon's blood (Chinese name: Xuejie), which comprises red resins obtained from several plants (27 species from 4 families), is drawing worldwide interests in medicinal applications owing to its broad pharmacological spectrum such as promoting blood circulation, regenerating muscle, relieving swelling and pain, maintaining hemostasis, etc. AIM OF THE STUDY: This work aims to evaluate current research progress on phenolic constituents, pharmacological activities, quality control, and metabolism of six Dracaena plants, namely, Dracaena cochinchinensis (Lour.) S.C.Chen, D. cambodiana Pierre ex Gagnep., D. cinnabari Balf. f., D. draco (L.) L., D. loureiroi Gagnep., and D. schizantha Baker, figure out the shortcomings of existing studies, and provide meaningful guidelines for future investigations. METHODS: Extensive database retrieval, such as SciFinder, PubMed, CNKI, ChemSpider, etc., was performed by using the keywords "Dracaena," "dragon's blood," as well as the Latin names of the six Dracaena species. In addition, relevant textbooks, patents, reviews, and documents were also employed to ensure sufficient information is collected. RESULTS: Flavonoids and their oligomers are the primary chemical clusters distributed in Dracaena plants. Pharmacological activities including analgesic, anti-inflammatory, antibacterial, hypolipidemic, hypoglycemic, and cytotoxic effects; bi-directional regulation effects on hemorheology; and cardiovascular and cerebrovascular effects have been disclosed by modern pharmacological evaluations. The chemical and metabolic profiles after oral administration of dragon's blood extract were preliminarily characterized. However, some of the pharmacological investigations reported only elementary methodologies and unreliable findings, and even worse, some important aspects were questionable or missing in these articles. CONCLUSIONS: Dragon's blood is a valuable source of bioactive compounds, mainly flavonoids and their oligomers. Its potential therapeutic effects on different diseases are attractive, such as the notable effect on cardiovascular diseases. In future studies, there is an urgent need to test the effect of this extract on appropriate cell lines and animal models to analyze its ethnopharmacological applications; moreover, "composition-effect correlation" methods and omics technologies are demanded for identifying the effective material basis and therapeutic mechanisms before entering into clinical trials. Moreover, attention should be paid to the chemical profiling and quality evaluation of this precious herbal medicine.
Assuntos
Dracaena , Animais , Etnofarmacologia , Humanos , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Controle de QualidadeRESUMO
Fifteen previously undescribed 2-(2-phenylethyl)chromone dimers, along with two known analogues were isolated from Chinese agarwood (Aquilaria sinensis) by a LC-MS-guided fractionation procedure. Their structures were elucidated on the basis of spectroscopic and spectrometric data (1D and 2D NMR, IR, and HRESIMS). The isolated compounds exhibited significant inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7â¯cells with IC50 values in the range 0.6-37.1⯵M.