Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 2, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593471

RESUMO

BACKGROUND: There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS: Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS: Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS: Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.


Assuntos
Cardiomiopatias , Sepse , Humanos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Células Cultivadas , Angiotensina II/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Sepse/complicações , Sepse/tratamento farmacológico
2.
Pharmacol Res ; 185: 106473, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182039

RESUMO

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.


Assuntos
Cardiomiopatias , Sepse , Camundongos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , NF-kappa B/metabolismo , Antagonistas de Receptores de Angiotensina , Receptor 4 Toll-Like , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno , Inibidores da Enzima Conversora de Angiotensina , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Macrófagos/metabolismo
3.
Genes Genet Syst ; 97(2): 67-79, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35675985

RESUMO

Acute myocardial infarction (AMI) is one of the leading causes of death globally, with a mortality rate of over 20%. However, the diagnostic biomarkers frequently used in current clinical practice have limitations in both sensitivity and specificity, likely resulting in delayed diagnosis. This study aimed to identify potential diagnostic biomarkers for AMI and explored the possible mechanisms involved. Datasets were retrieved from the Gene Expression Omnibus. First, we identified differentially expressed genes (DEGs) and preserved modules, from which we identified candidate genes by LASSO (least absolute shrinkage and selection operator) regression and the SVM-RFE (support vector machine-recursive feature elimination) algorithm. Subsequently, we used ROC (receiver operating characteristic) analysis to evaluate the diagnostic accuracy of the candidate genes. Thereafter, functional enrichment analysis and an analysis of immune infiltration were implemented. Finally, we assessed the association between biomarkers and biological processes, infiltrated cells, clinical traits, tissues and time points. We identified nine preserved modules containing 1,016 DEGs and managed to construct a diagnostic model with high accuracy (GSE48060: AUC = 0.923; GSE66360: AUC = 0.973) incorporating two genes named S100A9 and SOCS3. Functional analysis revealed the pivotal role of inflammation; immune infiltration analysis indicated that eight cell types (monocytes, epithelial cells, neutrophils, CD8+ T cells, Th2 cells, NK cells, NKT cells and platelets) were likely involved in AMI. Furthermore, we observed that S100A9 and SOCS3 were correlated with inflammation, variably infiltrated cells, clinical traits of patients, sampling tissues and sampling time points. In conclusion, we suggested S100A9 and SOCS3 as diagnostic biomarkers of AMI and discovered their association with inflammation, infiltrated immune cells and other factors.


Assuntos
Calgranulina B , Perfilação da Expressão Gênica , Infarto do Miocárdio , Proteína 3 Supressora da Sinalização de Citocinas , Biomarcadores , Calgranulina B/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Inflamação , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética
4.
Front Physiol ; 13: 834077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492613

RESUMO

Rutin is a flavanol-type polyphenol that consists of flavanol quercetin and the disaccharide rutinose, which has been reported to exert various biological effects such as antioxidant and anti-inflammatory activities. It is not clear whether rutin has a protective effect on sepsis-induced cardiomyopathy (SIC). In this study, we used male C57BL/6 mice and cecal ligation and puncture (CLP) surgery to establish the model of SIC. Rutin was precautionarily treated (50, 100, 200 mg/kg per day, 7 days) before CLP. The results showed that rutin pretreatment (100, 200 mg/kg per day, 7 days) reduced the mortality of murine sepsis. We chose the 100 mg/kg dose for further studies. Mice were pretreatment with rutin (100 mg/kg per day, 7 days) before subjected to CLP, and myocardial tissue and blood samples were collected 24 h after CLP. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cTNT decreased, while interleukin-10 (IL-10) increased with rutin pretreatment. The cardiomyocytes apoptosis and mitochondrial dysfunction were also alleviated with rutin pretreatment. In conclusion, this study confirmed the efficacy of rutin-enriched diet in the prophylaxis of cardiac apoptosis and cardiac injury induced by CLP in mouse model. It provides a potential new approach on SIC prophylaxis in sepsis.

5.
Front Immunol ; 13: 829210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281010

RESUMO

Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the dysregulated host response to an infection. Sepsis, especially septic shock and multiple organ dysfunction is a medical emergency associated with high morbidity, high mortality, and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis based on their heterogeneous characteristics, complex organ/tissue-specific patterns in the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of pathogenic microbiology, and even different types of laboratory research models and clinical research methods. In the context of sepsis, Tregs may be considered both angels and demons. We propose that the symptoms and signs of sepsis can be attenuated by regulating Tregs. This review summarizes the controversial roles and Treg checkpoints in sepsis.


Assuntos
Sepse , Choque Séptico , Humanos , Sepse/complicações , Choque Séptico/diagnóstico , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa