Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 142(10): 903-917, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319434

RESUMO

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteína 1 Inibidora de Diferenciação , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína 7 Semelhante a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina/metabolismo , Medula Óssea/metabolismo , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo
2.
Dev Cell ; 59(15): 1954-1971.e7, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776924

RESUMO

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.


Assuntos
Frutose , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Frutose/metabolismo , Leucemia/metabolismo , Leucemia/patologia , Leucemia/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Plants (Basel) ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299101

RESUMO

The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.

4.
Leukemia ; 37(1): 164-177, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352191

RESUMO

The patients with relapsed and refractory diffuse large B-cell lymphoma (DLBCL) have poor prognosis, and a novel and effective therapeutic strategy for these patients is urgently needed. Although ubiquitin-specific protease 1 (USP1) plays a key role in cancer, the carcinogenic effect of USP1 in B-cell lymphoma remains elusive. Here we found that USP1 is highly expressed in DLBCL patients, and high expression of USP1 predicts poor prognosis. Knocking down USP1 or a specific inhibitor of USP1, pimozide, induced cell growth inhibition, cell cycle arrest and autophagy in DLBCL cells. Targeting USP1 by shRNA or pimozide significantly reduced tumor burden of a mouse model established with engraftment of rituximab/chemotherapy resistant DLBCL cells. Pimozide significantly retarded the growth of lymphoma in a DLBCL patient-derived xenograft (PDX) model. USP1 directly interacted with MAX, a MYC binding protein, and maintained the stability of MAX through deubiquitination, which promoted the transcription of MYC target genes. Moreover, pimozide showed a synergetic effect with etoposide, a chemotherapy drug, in cell and mouse models of rituximab/chemotherapy resistant DLBCL. Our study highlights the critical role of USP1 in the rituximab/chemotherapy resistance of DLBCL through deubiquitylating MAX, and provides a novel therapeutic strategy for rituximab/chemotherapy resistant DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Animais , Camundongos , Humanos , Rituximab/uso terapêutico , Pimozida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma não Hodgkin/tratamento farmacológico , Proteases Específicas de Ubiquitina/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
5.
Sci Adv ; 9(48): eadi7375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019913

RESUMO

Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.


Assuntos
Eritropoese , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Eritropoese/genética , Síndromes Mielodisplásicas/genética , Proteínas do Tecido Nervoso/genética , Prognóstico , Receptores Imunológicos/genética , Proteínas Roundabout
6.
Materials (Basel) ; 15(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35629563

RESUMO

Heavy silicon-doping in GaN generally causes a rough surface and saturated conductivity, while heavily silicon-doped n++-AlGaN with ≤5% aluminum can maintain an atomically flat surface and exhibit enhanced conductivity. Given this major advantage, we propose using multiple pairs of heavily silicon-doped n++-Al0.01Ga0.99N and undoped GaN instead of widely used multiple pairs of heavily silicon-doped n++-GaN and undoped GaN for the fabrication of a lattice-matched distributed Bragg reflector (DBR) by using an electrochemical (EC) etching technique, where the lattice mismatch between Al0.01Ga0.99N and GaN can be safely ignored. By means of using the EC etching technique, the n++-layers can be converted into nanoporous (NP) layers whilst the undoped GaN remains intact, leading to a significantly high contrast in refractive index between NP-layer and undoped GaN and thus forming a DBR. Our work demonstrates that the NP-Al0.01Ga0.99N/undoped GaN-based DBR exhibits a much smoother surface, enhanced reflectivity and a wider stopband than the NP-GaN/undoped GaN-based DBR. Furthermore, the NP-Al0.01Ga0.99N/undoped GaN-based DBR sample with a large size (up to 1 mm in width) can be obtained, while a standard NP-GaN/undoped GaN-based DBR sample obtained is typically on a scale of a few 100 µm in width. Finally, a series of DBR structures with high performance, ranging from blue to dark yellow, was demonstrated by using multiple pairs of n++-Al0.01Ga0.99N and undoped GaN.

7.
Cell Res ; 32(12): 1105-1123, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302855

RESUMO

Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Carcinogênese , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Histona Desacetilases , Leucemia Mieloide Aguda/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa