Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 5973-5989, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823866

RESUMO

Three-dimensional (3D) perception of deep-sea targets is the key to autonomous operation of underwater equipment (e.g., underwater robots). Underwater one-mirror galvanometric line-laser scanner has advantages for short-range measurement, but it is difficult to achieve high calibration accuracy due to installation errors and refraction effects. For this reason, in this paper, a high-accuracy refraction-considered and installation-error-independent calibration method is proposed for the vision system. Firstly, to address the difficulty of aligning the incident light plane with the galvanometer shaft, a high-accuracy land-based installation-error-independent model is proposed, which avoids the influence of the installation errors and allows the real shaft axis and the light-plane cluster poses to be calculated using only three light planes. Subsequently, considering the underwater refraction, a 3D model is established for simulating refractive behaviors of the light-plane cluster, and then a partition-based method is proposed for calibrating the underwater light-plane cluster, which further improves the calibration accuracy of the scanner in underwater measurement scenarios. Finally, a one-mirror galvanometric laser scanner is developed in the laboratory to verify the calibration accuracy and to perform the 3D measurement experiments of underwater targets. The results show that the calibration accuracy of the proposed land-based installation-error-independent model is improved 2 times more compared with the traditional installation-error-dependent model. Additionally, the measurement accuracy of the scanner for the standard sphere is 11.98 µm and 12.75 µm in the air and underwater measurement scenarios, and the two measurements are in good agreement. The above results comprehensively verify the high accuracy of the calibration method proposed in this paper.

2.
Opt Express ; 30(26): 47625-47646, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558687

RESUMO

Oilfield pipes with out-of-tolerance internal thread can lead to failures, so the internal thread geometric parameters need to be measured. To tackle the problem of the low efficiency, poor accuracy, easy wear, and poor accessibility of existing methods, a single-lens multi-mirror laser stereo vision-based system for measuring geometric parameters of the internal thread is proposed, which allows the measurement of three parameters in one setup by completely reproducing the three-dimensional (3D) tooth profiles of the internal thread. In the system design, to overcome the incomplete representation of imaging parameters caused by insufficient consideration of dimensions and structural parameters of the existing models, an explicit 3D optical path model without a reflecting prism is first proposed. Then, considering the intervention of the reflecting prism, a calculation model for the suitable prism size and the final imaging parameters of the vision system is proposed, which ensures the measurement accessibility and accuracy by solving the problem that the existing system design only depends on experience without theoretical basis. Finally, based on the American Petroleum Institute standard, internal thread geometric parameters are obtained from the vision-reconstructed 3D tooth profiles. According to the optimized structural parameters, a vision system is built for measuring the internal thread geometric parameters of two types of oilfield pipes. Accuracy verification and typical internal thread measurement results show that the average measurement errors of the vision system proposed for the pitch, taper, and tooth height are 0.0051 mm, 0.6055 mm/m, and 0.0071 mm, respectively. Combined with the vision measurement time of 0.5 s for the three parameters, the above results comprehensively verify the high accuracy and high efficiency of the vision-based system.

3.
Opt Express ; 30(26): 47701-47719, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558692

RESUMO

Geometric parameter measurement of tubing internal thread is critical for oil pipeline safety. In response to the shortcomings of existing methods for measuring internal thread geometric parameters, such as low efficiency, poor accuracy, and poor accessibility, this paper proposes a vision system for measuring internal thread geometric parameters based on double-mirrored structured light. Compared to previous methods, our system can completely reproduce the internal thread tooth profiles and allows multi-parameter measurement in one setup. To establish the correlation between the structural and imaging parameters of the vision system, three-dimensional (3D) optical path models (OPMs) for the vision system considering the mirror effect of the prism is proposed, which extends the scope of the optical path analysis and provides a theoretical foundation for designing the structural parameters of the vision system. Moreover, modeling and three-step calibration methods for the vision system are proposed to realize high-accuracy restoration from the two-dimensional (2D) virtual image to the actual 3D tooth profiles. Finally, a vision measurement system is developed, and experiments are carried out to verify the accuracy and measure the three geometric parameters (i.e., taper, pitch, and tooth height) of typical internal threads. Based on the validation results using the reference system, the vision measurement accuracy and efficiency are 6.7 and 120 times that of the traditional system, which verifies the measurement effectiveness and accuracy of the vision system proposed in this paper.

4.
Opt Express ; 29(20): 31249-31269, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615221

RESUMO

The feasibility and accuracy of four-mirror-based monocular stereo vision (FMSV) are related to the system layout and calibration accuracy, respectively. In this study, a spatial light path analysis method and a calibration method are proposed for an FMSV system. As two-dimensional light path analysis cannot fully characterize the imaging parameters, a spatial light path model is proposed, which allows refinement of the system design. Then, considering the relationship between the lens distortion and the imaging depth of field (DoF), a DoF-distortion equal-partition-based model is established. In the traditional calibration method, the optical axis must be perpendicular to the chessboard. Here, an accurate and practical FMSV calibration method without this constraint is proposed based on the above model. Using the proposed spatial light path analysis technique, a high-accuracy, high-portability FMSV system is constructed and calibrated, for which the average error of the vision-reconstructed distance is 0.0298 mm. In addition, robot path accuracy is evaluated by the system and compared to laser-tracker measurement results. Hence, high accuracy of 0.031 mm is determined for the proposed vision system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa