Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Proteome Res ; 23(6): 2253-2264, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38698681

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as the predominant chronic liver condition globally, and underdiagnosis is common, particularly in mild cases, attributed to the asymptomatic nature and traditional ultrasonography's limited sensitivity to detect early-stage steatosis. Consequently, patients may experience progressive liver pathology. The objective of this research is to ascertain the efficacy of serum glycan glycopatterns as a potential diagnostic biomarker, with a particular focus on the disease's early stages. We collected a total of 170 serum samples from volunteers with mild-NAFLD (Mild), severe-NAFLD (Severe), and non-NAFLD (None). Examination via lectin microarrays has uncovered pronounced disparities in serum glycopatterns identified by 19 distinct lectins. Following this, we employed four distinct machine learning algorithms to categorize the None, Mild, and Severe groups, drawing on the alterations observed in serum glycopatterns. The gradient boosting decision tree (GBDT) algorithm outperformed other models in diagnostic accuracy within the validation set, achieving an accuracy rate of 95% in differentiating the None group from the Mild group. Our research indicates that employing lectin microarrays to identify alterations in serum glycopatterns, when integrated with advanced machine learning algorithms, could constitute a promising approach for the diagnosis of NAFLD, with a special emphasis on its early detection.


Assuntos
Biomarcadores , Lectinas , Aprendizado de Máquina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Biomarcadores/sangue , Lectinas/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Algoritmos , Polissacarídeos/sangue , Polissacarídeos/química , Glicoproteínas/sangue
2.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320302

RESUMO

Canavalia gladiata leaf extract (CGLE) is extracted from crop waste employing a water decoction method. By employing electrochemical techniques, morphology analysis, quantum chemical calculations, and other methods, we extensively investigated the anticorrosion efficacy of CGLE on copper within a H2SO4 solution. The outcomes reveal that at 298 K, a CGLE concentration of 800 mg/L attains a remarkable inhibition efficiency (IE) of 96.8%. Additionally, we examined the impact of CGLE on the corrosion resistance of copper at varying temperatures. Even with rising temperatures, CGLE manages to sustain an IE of over 95%. This indicates that CGLE is mainly chemisorption based on the copper, leading to a strong adsorption. The surface test results show a noteworthy decrease in the extent of copper surface corrosion upon the introduction of CGLE. The study of the adsorption model demonstrates the alignment of CGLE adsorption onto the copper with the Langmuir adsorption.

3.
BMC Med Educ ; 24(1): 759, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010040

RESUMO

BACKGROUND: International student education has become an important part of higher education and an important symbol to measure the level of higher education. To change the traditional teaching model, here we introduced a combination of Case-Based Learning (CBL)and Flipped Classroom (FC) into the pathophysiology course for international students. This study aimed to explore whether the active learning ability and critical thinking ability of international students can be improved, based on this new teaching model, improving the innovation ability of teachers' team and students' attitude to the reform. METHODS: The two chapters of Cardiac Insufficiency and Apoptosis in Pathophysiology are designed as a CBL + FC teaching method. Distribute the Self-assessment Scale on Active Learning and Critical Thinking (SSACT) and satisfaction questionnaire to international students to evaluate teaching reform based on CBL + FC. RESULTS: Compared with the traditional classroom, the online flipped classroom based on CBL has significantly improved the learning enthusiasm, as these students are required to independently complete literature review, actively participate in classroom teaching, learn to use multiple learning strategies, and collaborate with other students to complete PowerPoint (PPT)production. At the same time, the students' ability to raise problems and solve problems has been greatly improved by analyzing clinical cases; By consulting the literature, the theoretical knowledge learned can be better applied to clinical analysis. The results of the satisfaction survey also show that international students are more likely to accept the flipped classroom teaching mode. CONCLUSIONS: This teaching mode will stimulate the learning motivation of international students, enhance teaching attraction and increase teaching interaction; At the same time, the CBL + FC teaching method can strengthen the evaluation of international students' in and out of class and online learning, enhance students' active learning ability and critical thinking ability, promote the development of personalized learning, and integrate with international medical education.


Assuntos
Aprendizagem Baseada em Problemas , Pensamento , Humanos , Aprendizagem Baseada em Problemas/métodos , Estudantes de Medicina , Currículo , Modelos Educacionais , Inquéritos e Questionários , Avaliação Educacional , Educação de Graduação em Medicina/métodos , Masculino
4.
J Org Chem ; 88(14): 9803-9810, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37399451

RESUMO

By conducting density functional theory (DFT) calculations, the detailed reaction mechanisms of aldimines with tributyltin cyanide under the catalytic influence of chiral oxazaborolidinium ion (COBI) have been uncovered. Three potential reaction pathways were examined, and two stereoselective routes were determined for the most energetically favorable mechanism. In the primary route, a proton is transferred from the COBI catalyst to the aldimine substrate, which is then followed by the C-C bond formation to produce the final product. Subsequently, NBO analyses of the stereoselectivity-determining transition states were conducted to identify the crucial role of hydrogen bond interactions in controlling stereoselectivity. These computed findings should prove invaluable in comprehending the detailed mechanisms and underlying origins of stereoselectivity for COBI-mediated reactions of this type.

5.
Anal Chem ; 94(49): 17212-17222, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459499

RESUMO

Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), poses a serious threat to human health. It is urgently needed to develop recognition tools and discover molecular targets for early diagnosis and targeted therapy of esophageal cancer. Here, we developed several DNA aptamers that can bind to ESCC KYSE410 cells with a nanomolar range of dissociation constants by using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). The selected A2 aptamer is found to strongly bind with multiple cancer cells, including several ESCC cell lines. Tissue imaging displayed that the A2 aptamer can specifically recognize clinical ESCC tissues but not the adjacent tissues. Moreover, we identified integrin ß1 as the binding target of A2 through pull-down and RNA interference assays. Meanwhile, molecular docking and mutation assays suggested that A2 probably binds to integrin ß1 through the nucleotides of DA16-DG21, and competitive binding and structural alignment assays indicated that A2 shares the overlapped binding sites with laminin and arginine-glycine-aspartate ligands. Furthermore, we engineered A2-induced targeted therapy for ESCC. By constructing A2-tethered DNA nanoassemblies carrying multiple doxorubicin (Dox) molecules as antitumor agents, inhibition of tumor cell growth in vitro and in vivo was achieved. This work provides a useful targeting tool and a potential molecular target for cancer diagnosis and targeted therapy and is helpful for understanding the integrin mechanism and developing integrin inhibitors.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Integrina beta1/metabolismo , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/tratamento farmacológico , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Ligantes , Técnica de Seleção de Aptâmeros
6.
Analyst ; 146(13): 4180-4187, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34105524

RESUMO

Esophageal cancer is the ninth most common cancer and the sixth most common cause of cancer-related death worldwide, and the esophageal squamous cell carcinoma (ESCC) subtype accounts for about 90% of all cases of esophageal cancer globally. Currently, ESCC is usually diagnosed in late stages, and targeted therapy is lacking. Therefore, the development of ESCC-specific recognition molecules for an early detection and targeted treatment of ESCC is urgently needed. Aptamers are an excellent molecular recognition tool with unique advantages. In this manuscript, three aptamers (S2, S3, and S8) specific to ESCC cells were successfully screened via cell-SELEX. The experimental results displayed the high affinities of the three aptamers for target KYSE150 cells with dissociation constants in the nanomolar range. The specificity evaluation showed that S2 only bound target KYSE150 cells, but S3 and S8 were capable of targeting a series of ESCC cells. Moreover, several truncated aptamers were generated through sequence optimization. In particular, an ultrashort aptamer S3-2-3 with only 18 bases was successfully obtained; after labeling with Cy5 dyes, it was feasible for the specific imaging of ESCC tissues. Furthermore, the target types of the selected aptamers were preliminarily identified as membrane proteins, and target proteins could be captured by S3-2-3, which may be useful for biomarker discovery. Therefore, the selected aptamers hold great potential for clinical diagnosis, biomarker discovery, and the targeted therapy of ESCC.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linhagem Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Técnica de Seleção de Aptâmeros
7.
Mol Carcinog ; 59(2): 215-226, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793679

RESUMO

The high incidence and mortality of esophageal squamous cell cancer (ESCC) is a major health problem worldwide. Precancerous lesions of ESCC may either progress to cancer or revert to normal epithelium with appropriate interventions; the bidirectional instability of the precancerous lesions of ESCC provides opportunities for intervention. Reports suggest that the upregulation of ornithine decarboxylase (ODC) is closely related to carcinogenesis. In this study, we investigated whether ODC may act as a target for chemoprevention in ESCC. Immunohistochemistry (IHC) assays indicate that ODC expression is higher in esophageal precancerous lesions compared with normal tissue controls. Its overexpression promotes cell proliferation and transformation of normal esophageal epithelial cells, and its activity is increased after N-nitrosomethylbenzylamine (NMBA) induction in Shantou human embryonic esophageal cell line (SHEE) and human immortalized cells (Het1A) cells. In addition, p38 α, extracellular regulated kinase (ERK1/2) in the mitogen-activated protein kinase pathway and protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (p70S6K) pathways are activated in response to NMBA treatment. Difluoromethylornithine (DFMO) is an ODC inhibitor, which inhibits NMBA-induced activation of p38 α, ERK1/2 and AKT/mTOR/p70S6K pathways; this has been verified by Western blotting. DFMO was also found to suppress the development of esophageal precancerous lesions in an NMBA-induced rat model; IHC demonstrated p38 α, ERK1/2, and AKT/mTOR/p70S6K pathways to be downregulated in these rats. These findings indicate the mechanisms by which ODC inhibition suppresses the development of esophageal precancerous lesions by downregulating p38 α, ERK1/2, and AKT/mTOR/p70S6k signaling pathways, ODC may be a potential target for chemoprevention in ESCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Ornitina Descarboxilase/metabolismo , Lesões Pré-Cancerosas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinógenos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Dimetilnitrosamina/análogos & derivados , Dimetilnitrosamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Ornitina Descarboxilase/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética
8.
Mol Carcinog ; 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289209

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors of the digestive tract in humans. Several studies have indicated that PAK4 is associated with the risk of ESCC and may be a potential druggable kinase for ESCC treatment. However, the underlying mechanism remains largely unknown. The aim of our study is to identify the functional role of PAK4 in ESCC. To determine the expression of PAK4 in ESCC, Western blot analysis and immunohistochemistry were performed, and the results showed that PAK4 is significantly upregulated in ESCC tissues and cell lines compared with normal controls and normal esophageal epithelial cell line. To further investigate the role of PAK4 in ESCC, cell viability assays, anchorage-independent cell growth assays, wound healing assays, cellular invasion assays, in vivo xenograft mouse models, and metastasis assays were conducted, and the results showed that PAK4 can significantly facilitate ESCC proliferation and metastasis in vitro and in vivo. To determine the potential target of PAK4 in ESCC progression, a pull-down assay was performed, and the results showed that LASP1 may be a potential target of PAK4. An immunoprecipitation assay and confocal microscopy analysis confirmed that PAK4 can bind to and colocalize with LASP1 in vitro and in cells. Notably, rescue experiments further illustrated the mechanistic network of PAK4/LASP1. Our research reveals the oncogenic roles of PAK4 in ESCC and preliminarily elucidates the mechanistic network of PAK4/LASP1 in ESCC.

9.
BMC Cancer ; 20(1): 43, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959146

RESUMO

Following publication of the original article [1], the authors reported the errors in Fig. 1C and D, Fig. 2, Fig. 4B and C and Fig. 6D and E.

10.
BMC Cancer ; 19(1): 1264, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888532

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a fatal disease with poor prognosis. The predominant reason for ESCC-related death is distal metastasis. A comprehensive understanding of the molecular mechanism underlying metastasis is needed for improving patient prognosis. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase, which plays a vital role in various physiological and pathophysiological processes. However, the role of TOPK in ESCC metastasis is unclear. METHODS: Tissue array was used to evaluate the correlation between TOPK expression and ESCC lymph node metastasis. Wound healing assay, transwell assay, and lung metastasis mice model were used to examine the role of TOPK in the migration of ESCC cells in vitro and in vivo. Protein kinase array, mass spectrometry (MS), and molecular modeling were used to examine the pathways and direct target proteins of TOPK that are involved in ESCC metastasis. Additionally, immunofluorescence and western blotting analyses were performed to verify these findings. RESULTS: The enhanced expression of TOPK was correlated with lymph node metastasis in the ESCC tissues. TOPK knockdown or treatment with the TOPK inhibitor (HI-TOPK-032) decreased the invasion and migration of ESCC cells in vitro. HI-TOPK-032 also inhibited the lung metastasis in ESCC cell xenograft in vivo model. Moreover, TOPK promoted the invasion of ESCC cells by activating the Src/GSK3ß/STAT3 and ERK signaling pathways via γ-catenin. CONCLUSION: The findings of this study reveal that TOPK is involved in ESCC metastasis and promoted the ESCC cell mobility by activating the Src/GSK3ß/STAT3 and ERK signaling pathways. This indicated that TOPK may be a potential molecular therapeutic target for ESCC metastasis.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , gama Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Xenoenxertos , Humanos , Metástase Linfática , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica , Estadiamento de Neoplasias , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
11.
Mol Carcinog ; 57(11): 1540-1552, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30035335

RESUMO

Esophageal squamous cell carcinoma (ESCC) is highly prevalent in Asia, especially in China. Research findings indicate that nitrosamines, malnutrition, unhealthy living habits, and genetics contribute to esophageal carcinogenesis. Currently, the 5-year survival rate for ESCC patients remains low, owing in part to a lack of a clear understanding of mechanisms involved. Chemoprevention using natural or synthesized compounds might be a promising strategy to reduce esophageal cancer incidence. The epidermal growth factor receptor (EGFR) can activate downstream pathways including the phosphatidylinositol 3-kinase (PI3K) pathway and the Ras/mitogen-activated protein kinase (MAPK) pathways. Among the important players, AKT and ERKs have an important relationship with cancer initiation and progression. Here, we found that phosphorylated (p)-AKT and p-ERKs were highly expressed in esophageal cancer cell lines and in esophageal cancer patients. Human phospho-kinase array and pull-down assay results showed that quercetin-3-methyl ether (Q3ME) is a natural flavonoid compound that interacted with AKT and ERKs and inhibited their kinase activities. At the cellular level, Q3ME attenuated esophageal cancer cell proliferation and anchorage-independent growth. Western blot analysis showed that this compound suppressed the activation of AKT and ERKs downstream signaling pathways, subsequently inhibiting activating protein-1 (AP-1) activity. Importantly, Q3ME inhibited the formation of esophageal preneoplastic lesions induced by N-nitrosomethylbenzylamine (NMBA). The inhibition by Q3ME was associated with decreased inflammation and esophageal cancer cell proliferation in vivo. Collectively, our data suggest that Q3ME is a promising chemopreventive agent against esophageal carcinogenesis by targeting AKT and ERKs.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/análogos & derivados , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Mucosa Esofágica/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt/química , Quercetina/química , Quercetina/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/química
12.
J Transl Med ; 16(1): 138, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788985

RESUMO

BACKGROUND: The overall 5-year survival rate of lung cancer is about 15% even with therapeutic drugs like tyrosine kinase inhibitors. Ideal models are urgently needed for exploring mechanisms and finding new drugs. Patient-derived xenografts (PDX) models and primary cells are both used to screen therapeutic regimens for cancer. However, PDX models and primary cells from the same patient are difficult to establish. Their consistency to the original tumor tissue is not well studied. METHODS: 31 lung cancer patient tissues were procured to establish the lung cancer PDX models and primary cell lines. Tumor growth measurements, histological and immunohistochemistry analysis, Western blotting, EGFR and K-RAS mutation detection and gefitinib sensitive assay were performed to evaluate the characteristic of established PDX models. Immunofluorescence analysis, anchorage-independent cell growth, Western blotting and gefitinib sensitive assay were performed to assay the characteristic of established primary cell lines. The whole-exome sequencing was used to compare the characteristic of the patient's tumor tissue, established PDX and primary cell line. RESULTS: Twenty-one lung cancer PDX models (67.74%, 21/31) and ten primary cell lines (32.25%, 10/31) were established from patients' tumor tissues. The histology and pathological immunohistochemistry of PDX xenografts are consistent with the patients' tumor samples. Various signal pathways were activated in different PDX models (n = 5) and primary cell lines (n = 2). EGFR mutation PDX model and primary cell line (LG1) were sensitive to gefitinib treatment. The expression of CK8/18, TTF1 and NapsinA in LG1 and LG50 primary cells were also positive. And the activated signal pathways were activated in LG1 and LG50 primary cell lines. Furthermore, the gene mutation in PDX tumor tissues and primary cell line (LG50) was consistent with the mutation in LG50 patient's tumor tissues. CONCLUSION: These data suggested that established lung cancer PDX models and primary cell lines reserved mostly molecular characteristics of primary lung cancer and could provide a new tool to further understand the mechanisms and explore new therapeutic strategies.


Assuntos
Neoplasias Pulmonares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Sequenciamento do Exoma
13.
J Biol Chem ; 289(2): 909-20, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24253041

RESUMO

Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA synthesis. Human RR small subunit M2 exists in a homodimer form. However, the importance of the dimer form to the enzyme and the related mechanism remain unclear. In this study, we tried to identify the interfacial residues that may mediate the assembly of M2 homodimer by computational alanine scanning based on the x-ray crystal structure. Co-immunoprecipitation, size exclusion chromatography, and RR activity assays showed that the K95E mutation in M2 resulted in dimer disassembly and enzyme activity inhibition. In comparison, the charge-exchanging double mutation of K95E and E98K recovered the dimerization and activity. Structural comparisons suggested that a conserved cluster of charged residues, including Lys-95, Glu-98, Glu-105, and Glu-174, at the interface may function as an ionic lock for M2 homodimer. Although the measurements of the radical and iron contents showed that the monomer (the K95E mutant) was capable of generating the diiron and tyrosyl radical cofactor, co-immunoprecipitation and competitive enzyme inhibition assays indicated that the disassembly of M2 dimer reduced its interaction with the large subunit M1. In addition, the immunofluorescent and fusion protein-fluorescent imaging analyses showed that the dissociation of M2 dimer altered its subcellular localization. Finally, the transfection of the wild-type M2 but not the K95E mutant rescued the G1/S phase cell cycle arrest and cell growth inhibition caused by the siRNA knockdown of M2. Thus, the conserved Lys-95 charged residue cluster is critical for human RR M2 homodimerization, which is indispensable to constitute an active holoenzyme and function in cells.


Assuntos
Ácido Glutâmico/metabolismo , Lisina/metabolismo , Multimerização Proteica , Ribonucleosídeo Difosfato Redutase/metabolismo , Substituição de Aminoácidos , Biocatálise , Proliferação de Células , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Ácido Glutâmico/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Microscopia Confocal , Modelos Moleculares , Mutação , Interferência de RNA , Ribonucleosídeo Difosfato Redutase/química , Ribonucleosídeo Difosfato Redutase/genética
14.
Cancer Lett ; 582: 216596, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101610

RESUMO

Patients with colorectal cancer (CRC) suffer from poor prognosis and lack effective drugs. Dihydroartemisinin (DHA) has anti-cancer potential but the mechanism remains unclear. We elucidated the effects and mechanism of DHA on CRC development with the aim of providing an effective, low-toxicity drug and a novel strategy for CRC. Herein, proliferation assay, transwell assay, tube formation assay, metastasis models, PDX model and AOM/DSS model were used to reveal the effects of DHA on CRC. The key pathway and target were identified by RNA-seq, ChIP, molecular docking, pull down and dual-luciferase reporter assays. As a result, DHA showed a strong inhibitory effect on the growth, metastasis and angiogenesis of CRC with no obvious toxicity, and the inhibitory effect was similar to that of the clinical drug Capecitabine (Cap). Indeed, DHA directly targeted GSK-3ß to inhibit CRC development through the GSK-3ß/TCF7/MMP9 pathway. Meaningfully, DHA in combination with Cap enhanced the anti-cancer effect, and alleviated Cap-induced diarrhoea, immunosuppression and inflammation. In conclusion, DHA has the potential to be an effective and low-toxicity drug for the treatment of CRC. Furthermore, DHA in combination with Cap could be a novel therapeutic strategy for CRC with improved efficacy and reduced side effects.


Assuntos
Artemisininas , Neoplasias Colorretais , Humanos , Capecitabina/farmacologia , Capecitabina/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Neoplasias Colorretais/patologia , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Fator 1 de Transcrição de Linfócitos T
15.
Int J Biol Macromol ; 259(Pt 1): 129002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176501

RESUMO

Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Proibitinas , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Biomarcadores , Técnica de Seleção de Aptâmeros/métodos , Linhagem Celular Tumoral
16.
Front Med ; 17(2): 290-303, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36580233

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death worldwide. It is urgent to develop new drugs to improve the prognosis of ESCC patients. Here, we found benzydamine, a locally acting non-steroidal anti-inflammatory drug, had potent cytotoxic effect on ESCC cells. Benzydamine could suppress ESCC proliferation in vivo and in vitro. In terms of mechanism, CDK2 was identified as a target of benzydamine by molecular docking, pull-down assay and in vitro kinase assay. Specifically, benzydamine inhibited the growth of ESCC cells by inhibiting CDK2 activity and affecting downstream phosphorylation of MCM2, c-Myc and Rb, resulting in cell cycle arrest. Our study illustrates that benzydamine inhibits the growth of ESCC cells by downregulating the CDK2 pathway.


Assuntos
Benzidamina , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosforilação , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Quinase 2 Dependente de Ciclina
17.
Oncogene ; 42(29): 2278-2293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349644

RESUMO

Cisplatin (CDDP) is the first-line drug in the clinical treatment of esophageal squamous cell carcinoma (ESCC), which has severe nephrotoxicity. Diosmetin (DIOS) can protect kidney from oxidative damage, however, its function in ESCC is unknown. This study aims to explore the effect and mechanism of DIOS on ESCC and its combined effect with CDDP. Herein, we found that DIOS significantly inhibited the progression of ESCC in vitro and in vivo. Furthermore, the anti-tumor effect of DIOS was not statistically different from that of CDDP. Mechanically, transcriptomics revealed that DIOS inhibited the E2F2/RRM2 signaling pathway. The transcriptional regulation of RRM2 by E2F2 was verified by luciferase assay. Moreover, docking model, CETSA, pull-down assay and CDK2 inhibitor assay confirmed that DIOS directly targeted CDK2, leading to significant suppression of ESCC. Additionally, the patient-derived xenografts (PDX) model showed that the combination of DIOS and CDDP significantly inhibited the growth of ESCC. Importantly, the combined treatment with DIOS and CDDP significantly reduced the mRNA expression levels of kidney injury biomarkers KIM-1 and NGAL in renal tissue, as well as the levels of blood urea nitrogen, serum creatinine and blood uric acid compared to the single treatment with CDDP. In conclusion, DIOS could be an effective drug and a potential chemotherapeutic adjuvant for ESCC treatment. Furthermore, DIOS could reduce the nephrotoxicity of CDDP to some extent.


Assuntos
Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/genética , Fator de Transcrição E2F2
18.
Oncogene ; 42(32): 2456-2470, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400530

RESUMO

Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.


Assuntos
Neoplasias Colorretais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Colesterol , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética
19.
Anticancer Agents Med Chem ; 22(7): 1296-1312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34102987

RESUMO

BACKGROUND: Colony-stimulating factor-1 (CSF1) is a cytokine that is closely related to normal organ growth and development as well as tumor progression. OBJECTIVE: We aimed to summarize and clarify the reasons for the abnormal expression of CSF1 in tumors and explore the role of CSF1 in tumor progression. Furthermore, drug response analysis could provide a reference for clinical medication. METHODS: The expression of CSF1 was analyzed by TCGA and CCLE. Besides, cBioPortal and MethSurv databases were used to conduct mutation and DNA methylation analyses. Further, correlations between CSF1 expression and tumor stage, survival, immune infiltration, drug sensitivity and enrichment analyses were validated via UALCAN, Kaplan-Meier plotter, TIMER, CTRP and Coexperia databases. RESULTS: CSF1 is expressed in a variety of tissues; meaningfully, it can be detected in the blood. Compared with normal tissues, CSF1 expression was significantly decreased in most tumors. The missense mutation and DNA methylation of CSF1 might cause the downregulated expression. Moreover, decreased CSF1 expression was related to higher tumor stage and worse survival. Further, the promoter DNA methylation level of CSF1 was prognostically significant in most tumors. Besides, CSF1 was closely related to immune infiltration, especially macrophages. Importantly, CSF1 expression was associated with a good response to VEGFRs inhibitors, which may be due to the possible involvement of CSF1 in tumor angiogenesis and metastasis processes. CONCLUSION: The abnormal expression of CSF1 could serve as a promising biomarker of tumor progression and prognosis in pan-cancer. Significantly, angiogenesis and metastasis inhibitors may show a good response to CSF1-related tumors.


Assuntos
Biomarcadores Tumorais , Neoplasias , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico
20.
Front Oncol ; 11: 683241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422635

RESUMO

Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two major types of esophageal cancer (EC). ESCC accounts for 90% of EC. Recurrence after primary treatment is the main reason for poor survival. Therefore, recurrence prevention is a promising strategy for extending the 5-year survival rate. Here, we found tegaserod maleate could inhibit ESCC proliferation both in vivo and in vitro. Proteomics analysis revealed that tegaserod maleate suppressed the peroxisome signaling pathway, in which the key molecules peroxisome membrane protein 11B (PEX11B) and peroxisome membrane protein 13 (PEX13) were downregulated. The immunofluorescence, catalase activity assay, and reactive oxygen species (ROS) confirmed that downregulation of these proteins was related to impaired peroxisome function. Furthermore, we found that PEX11B and PEX13 were highly expressed in ESCC, and knockout of PEX11B and PEX13 further demonstrated the antitumor effect of tegaserod maleate. Importantly, tegaserod maleate repressed ESCC tumor growth in a patient-derived xenograft (PDX) model in vivo. Our findings conclusively demonstrated that tegaserod maleate inhibits the proliferation of ESCC by suppressing the peroxisome pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa