Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell ; 186(21): 4662-4675.e12, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734372

RESUMO

Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.

2.
Nature ; 580(7803): E7, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296181

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 579(7798): 265-269, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015508

RESUMO

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Assuntos
Betacoronavirus/classificação , Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/virologia , Adulto , Betacoronavirus/genética , COVID-19 , China , Doenças Transmissíveis Emergentes/diagnóstico por imagem , Doenças Transmissíveis Emergentes/patologia , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/patologia , Genoma Viral/genética , Humanos , Pulmão/diagnóstico por imagem , Masculino , Filogenia , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/patologia , RNA Viral/genética , Recombinação Genética/genética , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico por imagem , Síndrome Respiratória Aguda Grave/patologia , Tomografia Computadorizada por Raios X , Sequenciamento Completo do Genoma
4.
EMBO J ; 39(24): e105896, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33140861

RESUMO

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/patologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/virologia , Feminino , Genômica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolômica/métodos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
5.
PLoS Pathog ; 18(2): e1010259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35176118

RESUMO

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen-Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Pneumonia/epidemiologia , Infecções Respiratórias/epidemiologia , SARS-CoV-2/isolamento & purificação , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/microbiologia , COVID-19/virologia , China/epidemiologia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Pneumonia/microbiologia , Infecções Respiratórias/microbiologia , Adulto Jovem
6.
Int J Neuropsychopharmacol ; 26(10): 655-668, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37025079

RESUMO

BACKGROUND: Although thought of as a multimodal-acting antidepressant targeting the serotonin system, more molecules are being shown to participate in the antidepressant mechanism of vortioxetine. A previous report has shown that vortioxetine administration enhanced the expression of rapamycin complex 1 (mTORC1) in neurons. It has been well demonstrated that mTORC1 participates in not only the pathogenesis of depression but also the pharmacological mechanisms of many antidepressants. Therefore, we speculate that the antidepressant mechanism of vortioxetine may require mTORC1. METHODS: Two mouse models of depression (chronic social defeat stress and chronic unpredictable mild stress) and western blotting were first used together to examine whether vortioxetine administration produced reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Then, LY294002, U0126, and rapamycin were used together to explore whether the antidepressant effects of vortioxetine in mouse models of depression were attenuated by pharmacological blockade of the mTORC1 system. Furthermore, lentiviral-mTORC1-short hairpin RNA-enhanced green fluorescence protein (LV-mTORC1-shRNA-EGFP) was adopted to examine if genetic blockade of mTORC1 also abolished the antidepressant actions of vortioxetine in mice. RESULTS: Vortioxetine administration produced significant reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and mPFC. Both pharmacological and genetic blockade of the mTORC1 system notably attenuated the antidepressant effects of vortioxetine in mice. CONCLUSIONS: Activation of the mTORC1 system in the hippocampus and mPFC is required for the antidepressant actions of vortioxetine in mice.


Assuntos
Antidepressivos , Hipocampo , Camundongos , Animais , Vortioxetina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Córtex Pré-Frontal/metabolismo , Sirolimo/farmacologia
7.
Mol Psychiatry ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434056

RESUMO

Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.

8.
BMC Med ; 20(1): 24, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35045853

RESUMO

BACKGROUND: COVID-19 is an infectious disease characterized by multiple respiratory and extrapulmonary manifestations, including gastrointestinal symptoms. Although recent studies have linked gut microbiota to infectious diseases such as influenza, little is known about the role of the gut microbiota in COVID-19 pathophysiology. METHODS: To better understand the host-gut microbiota interactions in COVID-19, we characterized the gut microbial community and gut barrier function using metagenomic and metaproteomic approaches in 63 COVID-19 patients and 8 non-infected controls. Both immunohematological parameters and transcriptional profiles were measured to reflect the immune response in COVID-19 patients. RESULTS: Altered gut microbial composition was observed in COVID-19 patients, which was characterized by decreased commensal species and increased opportunistic pathogenic species. Severe illness was associated with higher abundance of four microbial species (i.e., Burkholderia contaminans, Bacteroides nordii, Bifidobacterium longum, and Blautia sp. CAG 257), six microbial pathways (e.g., glycolysis and fermentation), and 10 virulence genes. These severity-related microbial features were further associated with host immune response. For example, the abundance of Bu. contaminans was associated with higher levels of inflammation biomarkers and lower levels of immune cells. Furthermore, human-origin proteins identified from both blood and fecal samples suggested gut barrier dysfunction in COVID-19 patients. The circulating levels of lipopolysaccharide-binding protein increased in patients with severe illness and were associated with circulating inflammation biomarkers and immune cells. Besides, proteins of disease-related bacteria (e.g., B. longum) were detectable in blood samples from patients. CONCLUSIONS: Our results suggest that the dysbiosis of the gut microbiome and the dysfunction of the gut barrier might play a role in the pathophysiology of COVID-19 by affecting host immune homeostasis.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Disbiose , Homeostase , Humanos , SARS-CoV-2
9.
Toxicol Appl Pharmacol ; 437: 115893, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085591

RESUMO

Background Oxidative stress and inflammation play important roles in the development of diabetes. Metformin (MET) is considered as the first-line therapy for patients with type 2 diabetes (T2D). Hypothalamic paraventricular nucleus (PVN) and hypothalamic arcuate nucleus (ARC) are vital in obesity and diabetes. However, there have been few studies on the effects of MET on inflammatory reaction and oxidative stress in the PVN and ARC of T2D diabetic rats. Methods Male Sprague-Dawley (SD) rats were fed with high-fat diet (HFD), and intraperitoneally injected with low-dose streptozotocin (STZ, 30 mg/kg) at 6th week to induce T2D diabetes. After injection of STZ, they were fed with HFD continually. Starting from the 8th week of HFD feeding, T2D rats received intragastrical administration of MET (150 mg/kg/day) in addition to the HFD for another 8 weeks. At the end of the 15th week, the rats were anaesthetized to record the sympathetic nerve activity and collect blood and tissue samples. Results In comparison with control rats, T2D diabetic rats had higher levels of pro-inflammatory cytokines (PICs) and excessive oxidative stress in the PVN and ARC, accompanied with more activated astrocytes. The renal sympathetic nerve activity (RSNA) and the plasma norepinephrine (NE) increased in T2D diabetic rats. The expression of tyrosine hydroxylase (TH) increased and the expression of 67-kDa isoform of glutamate decarboxylase (GAD67) decreased in T2D diabetic rats. Supplementation of MET decreased blood glucose, suppressed RSNA, decreased PICs (TNF-α, IL-1ß and IL-6) in PVN and ARC, attenuated oxidative stress and activation of astrocytes in ARC and PVN of T2D diabetic rats, as well as restored the balance of neurotransmitter synthetase. The number of Fra-LI (chronic neuronal excitation marker) positive neurons in the ARC and PVN of T2D diabetic rats increased. Chronic supplementation of MET also decreased the number of Fra-LI positive neurons in the ARC and PVN of T2D diabetic rats. Conclusion These findings suggest that the PVN and ARC participate in the beneficial effects of MET in T2D diabetic rats, which is possibly mediated via down-regulating of inflammatory molecules, attenuating oxidative stress and restoring the balance of neurotransmitter synthetase by MET in the PVN and ARC.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Nature ; 533(7604): 504-8, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225122

RESUMO

Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

11.
Sheng Li Xue Bao ; 74(2): 276-282, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35503075

RESUMO

Olfaction and food intake are interrelated and regulated. In the process of feeding, the metabolic signals in the body and the feeding signals produced by food stimulation are first sensed by the arcuate nucleus of hypothalamus and the nucleus tractus solitarius of brain stem, and then these neurons project to the paraventricular nucleus of hypothalamus. The paraventricular nucleus transmits the signals to other brain regions related to feeding and regulates feeding behavior. In this process, olfactory signals can be transmitted to hypothalamus through olfactory bulb and olfactory cortex to regulate feeding behavior. At the same time, gastrointestinal hormones (ghrelin, insulin, leptin, etc.) and some neurotransmitters (acetylcholine, norepinephrine, serotonin, endocannabinoid, etc.) produced in the process of feeding act on the olfactory system to regulate olfactory function, which in turn affects the feeding itself. This review summaries the research progress of the interaction between olfaction and food intake and its internal mechanism from the aspects of neuronal and hormonal regulation.


Assuntos
Comportamento Alimentar , Olfato , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo , Núcleo Hipotalâmico Paraventricular
12.
Pharmacol Res ; 174: 105932, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628001

RESUMO

As a widely-known neuropsychiatric disorder, the exact pathogenesis of depression remains elusive. MiRNA-206 (miR-206) is conventionally known as one of the myomiRs and has two forms: miR-206-3p and miR-206-5p. Recently, miR-206 has been demonstrated to regulate the biosynthesis of brain-derived neurotrophic factor (BDNF), a very popular target involved in depression and antidepressant responses. Here we assumed that miR-206 may play a role in depression, and various methods including the chronic social defeat stress (CSDS) model of depression, quantitative real-time reverse transcription PCR, western blotting, immuofluorescence and virus-mediated gene transfer were used together. It was found that CSDS robustly increased the level of miR-206-3p but not miR-206-5p in the hippocampus. Both genetic overexpression of hippocampal miR-206-3p and intranasal administration of AgomiR-206-3p induced not only notable depressive-like behaviors but also significantly decreased hippocampal BDNF signaling cascade and neurogenesis in naïve C57BL/6J mice. In contrast, both genetic knockdown of hippocampal miR-206-3p and intranasal administration of AntagomiR-206-3p produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, it was found that the antidepressant-like effects induced by miR-206-3p inhibition require the hippocampal BDNF-TrkB system. Taken together, hippocampal miR-206-3p participates in the pathogenesis of depression by regulating BDNF biosynthesis and is a feasible antidepressant target.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Depressão/genética , Hipocampo/metabolismo , MicroRNAs , Estresse Psicológico/genética , Animais , Antagomirs/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
13.
J Cardiovasc Pharmacol ; 77(2): 170-181, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538532

RESUMO

ABSTRACT: Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 µL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Parenterais , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Xantofilas/administração & dosagem
14.
Inorg Chem ; 60(2): 651-659, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33382238

RESUMO

The stability of many MOFs is not satisfactory, which severely limits the exploration of their potential applications. Given this, we have proposed a strategy to improve the stability of MOFs by introducing alkali metal K+ capable of coordinating with metal nodes, which finally induces the interpenetrating uranyl-porphyrin framework to connect as a whole (IHEP-9). The stability experiments reveal that the IHEP-9 has good thermal stability up to 400 °C and can maintain its crystalline state in the aqueous solution with pH ranging from 2 to 11. The catalytic activity of IHEP-9 as a heterogeneous photocatalyst for CO2 cycloaddition under the driving of visible light at room temperature is also demonstrated. This induced interpenetration and fixation method may be promising for the fabrication of more functional MOFs with improved structural stability.

15.
Neuroendocrinology ; 110(11-12): 899-913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31671427

RESUMO

BACKGROUND: Inflammation and oxidative stress play important roles in energy imbalance and its complications. Recent research indicates that hypothalamic inflammation may contribute to the pathogenesis of metabolic syndrome and cardiac dysfunction, but the mechanisms remain unclear. We hypothesized that suppression of the proinflammatory IKKß/NF-κB pathway in the hypothalamus can improve energy balance and cardiac function in type 2 diabetic (T2D) rats. METHODS: Normal and T2D rats received bilateral hypothalamic arcuate nucleus (ARC) infusions of the IKKß inhibitor SC-514 or vehicle via osmotic minipump. Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were used to investigate the outcomes of inhibition of the hypothalamic IKKß. Echocardiography and glucometer were used for measuring cardiac function and blood glucose, respectively. Blood samples were collected for the evaluation of circulating proinflammatory cytokines. Heart was harvested for cardiac morphology evaluations. The ARC was harvested and analyzed for IKKß, NF-κB, proinflammatory cytokines, reactive oxygen species (ROS), and NAD(P)H (gp91phox, p47phox) oxidase activity levels and neuropeptides. RESULTS: Compared with normal rats, T2D rats were characterized by hyperglycemia, hyperinsulinemia, glucose intolerance, cardiac dysfunction, as well as higher ARC levels of IKKß, NF-κB, proinflammatory cytokines, ROS, gp91phox, and p47phox. ARC infusion of the IKKß inhibitor SC-514 attenuated all these changes in T2D rats, but not in normal rats. CONCLUSIONS: Our results indicate that the hypothalamic IKKß/NF-κB pathway plays a key role in modulating energy imbalance and cardiac dysfunction, suggesting its potential therapeutic role during type 2 diabetes mellitus.


Assuntos
Núcleo Arqueado do Hipotálamo , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/imunologia , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Quinase I-kappa B/antagonistas & inibidores , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
16.
Inorg Chem ; 59(5): 3221-3231, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32048832

RESUMO

Nitrogen-donor ligands have been considered to be promising agents for separating trivalent actinides (An(III)) from lanthanides (Ln(III)). Thereinto, how to decorate these ligands for better extraction performance is urgent to design "perfect" separating extractants. In this work, we systematically explored a series of heterocyclic N-donor ligands (L1 = dipyridazino[4,3-c:3',4'-h]acridine, L2 = dipyridazino[3,4-a:4',3'-j]phenazine, L3 = 2,6-di(cinnolin-3-yl)pyridine)), as well as their substituted derivatives, and compared their extraction and complexation ability toward An(III) and Ln(III) ions by using quasi-relativistic density functional theory (DFT). We found that the pyridazine N atoms probably play a notable role in electron donation to metal cations by molecular orbital (MO) and bond order analyses. Besides, the calculated results clearly verified that these N-donor ligands possess higher coordination affinity toward Am(III) over Eu(III). The rigid ligands (L1 and L2) exhibit higher selective abilities for the Am(III)/Eu(III) separation compared with that of the flexible ligand (L3). For each ligand, the 1:2 (metal/ligand) extraction reaction is predicted to be most probable in the separation process. The introduction of an alkyl group on the lateral chain or an electron-donating group on the main chain gives rise to a better extraction performance of the ligands, and the CyMe4 or MeO substituted ligands show higher extraction and separation ability. Simultaneous introduction of CyMe4 and MeO groups can enhance the extraction ability of the ligand to metal ions, but the separating ability depends on the differences of the extraction capacity of An(III) and Ln(III). This work can help to gain a more in-depth understanding the selectivity differences of similar N-donor ligands and provide more theoretical insights into the design of novel extractants for An(III)/Ln(III) separation.

17.
J Enzyme Inhib Med Chem ; 34(1): 990-998, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072148

RESUMO

The novel kojic acid derivatives KAD1 and KAD2 have been demonstrated that they exhibited potent anti-melanogenesis activity in our previous report. In this study, we further study the inhibitory mechanism on mushroom tyrosinase. The inhibitory types of both KADs on diphenolase were classified as mixed type based on the results of the kinetic model. The interaction between KADs and tyrosinase was illustrated by fluorescence quenching, molecular docking and copper chelate activity. The KADs were also evaluated with respect to their antioxidant activities by DPPH and ABTS+ assays. The results showed that KADs have more potent antioxidant activities than kojic acid. Our study could provide new ideas for the development of new anti-tyrosinase and antioxidant agents.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pironas/farmacologia , Agaricales/enzimologia , Antioxidantes/química , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Cinética , Monofenol Mono-Oxigenase/metabolismo , Picratos/antagonistas & inibidores , Pironas/química , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 3991-5, 2016 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30235507

RESUMO

The interaction between 20(S)-protopanaxatriol (PPT) and bovine serum albumin ( BSA) was studied with fluorescence quenching technique and ultra-violet absorption spectroscopy. The results indicated that PPT led to the intrinsic fluorescence quenching of BSA through a static quenching process .The binding constants of PPT with BSA obtained with fluorescence quenching method were calculated as 0.926 3×10(3) (298 K), 0.618 2×10(3) (308 K), 0.414 4×10(3) L·mol(-1)(318 K), respectively; while the number binding sites n were close to unity. The results showed that the driving force of the interaction between PPT and BSA was hydrogen bond and Van der Waals force. The result of synchronous fluorescence spectra showed that binding of PPT with BSA could induce conformational changes in BSA, that the part of tryptophan became more closely. According to Föster fluorescence resonance energy transfer theory, the binding distance r and energy-transfer efficiency E were respectively 26.2 nm and 0.32.


Assuntos
Sapogeninas/química , Soroalbumina Bovina/química , Animais , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
19.
Molecules ; 20(9): 16924-32, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393542

RESUMO

Two new tetranorlabdane diterpenoids, named botryosphaerins G (1) and H (2), were isolated from the solid fermentation products of Botryosphaeria sp. P483 along with seven known tetranorlabdane diterpenes (3-9). Their structures were elucidated by extensive analysis, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Their absolute configuration was confirmed by single-crystal X-ray diffraction analyses using the anomalous scattering of Cu Kα radiation. All of the isolated compounds were tested for activity against phytopathogenic fungi and nematodes. Compounds 2 and 3 showed antifungal activity and compound 2 showed weak nematicidal activity.


Assuntos
Antifúngicos/farmacologia , Antinematódeos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Saccharomycetales/química , Antifúngicos/química , Antinematódeos/química , Cristalografia por Raios X , Diterpenos/farmacologia , Endófitos/química , Endófitos/fisiologia , Huperzia/microbiologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Saccharomycetales/fisiologia , Espectrometria de Massas por Ionização por Electrospray
20.
Phys Chem Chem Phys ; 16(3): 1078-83, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24287966

RESUMO

A novel reaction mechanism is presented for an ortho-magnesium carboxylate driven aromatic nucleophilic substitution in naphthoic acids, supported by high-level density functional theory. Results show that the rate-determining aspects involve an R-group transfer from a Grignard reagent Mg-atom to the C1-atom on a naphthalene ring. This transfer is moderated by a molecular corral comprised of two solvent THF molecules and the naphthoic acid, which collectively marshal the R-group into position. The CAM-B3LYP method was employed together with the all-electron DZVP basis set. Solvent was treated using an implicit dielectric continuum (PCM method) and IDSCRF atomic-radii. Further evolved solvent models were also investigated, consisting of explicit solvating particles forming a primary solvation layer framing the reaction center. Reaction barriers obtained are in close agreement with experimental trends, with R-group substituent-identity tempering repulsion with the molecular corral, in-turn modulating the free-energy barriers. Partitioning of the dynamic bases of entropy contribution to free-energy was central to the successful experimental-theoretical synergy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa