Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 13(2): 689-97, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26685983

RESUMO

Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is effective in the treatment of non-small-cell lung cancers (NSCLCs). However, resistance to EGFR inhibitors limits its effectiveness. In this study, we investigated the effectiveness of Jak-2 inhibitor, CYT387, in combination with cetuximab. Xenograft animal models were administered with cetuximab or CYT387 or their combination. It was observed that NSCLC cells exhibited enormous differences in responses to cetuximab; cell lines were more intrinsically resistant to cetuximab. In resistant cell lines (H1975 and H1650), the efficacy of cetuximab was increased when combined with CYT387, whereas CYT387 alone in low doses exhibited little effect on NSCLC cell proliferation. In addition, the antitumor activity of cetuximab was increased in H1975 resistant model in spite of low efficacy of cetuximab treatment alone in. Jak/STAT signaling was suppressed effectively by the combination of cetuximab and CYT387. In summary, our findings indicated that CYT387 has a potent indirect antitumor activity, and it is also synergistic in its activity in combination with cetuximab against NSCLC tumors, especially with cetuximab intrinsic-resistance tumors. These indications were mediated via Janus kinase (Jak)-signal transducer and transcription (STAT) pathway activator. Our results strongly and consistently supported the potential synergism of CYT387 as Jak inhibitor for anti-NSCLC therapy with EGFR-targeting agents.


Assuntos
Benzamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/patologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Janus Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neuropsychobiology ; 69(3): 129-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24776773

RESUMO

Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. Previous studies have demonstrated that the herbal medicine formula, 'kaixinsan' (KXS), could ameliorate the severity of depression and increase cAMP response element-binding protein expression. There is direct evidence suggesting that the reduction of the BDNF protein in specific brain sites can provoke depressive-like behaviour or affect neurogenesis in vivo. However, the biological mechanisms between the antidepressant and neuroprotective effect of KXS and the alterations in BDNF levels in in vivo and in vitro models remain unclear. Using BDNF knockdown mediated by lentiviral vectors (LV-shBDNF-3) transfected with primary hippocampal neurons and following injection into the dentate gyrus of the hippocampus, it was demonstrated that a reduction in BDNF expression affects cell viability and animal behaviours associated with depression. During treatment with KXS after the lentiviral shRNA silencing of BDNF in cell and animal, cell viability, body weight, the sucrose preference test (SPT), the open field test (OFT) the Morris Water Maze (MWM) task and BDNF expression were measured. KXS attenuated LV-shBDNF-3-induced cell death in primary hippocampal neurons and also improved the sucrose intake in SPT, ambulatory response in OFT and learning ability in MWM against LV-shBDNF-3-induced depressive-like syndromes. Moreover, immunoblot analysis confirmed that KXS could reverse LV-shBDNF-induced BDNF reduction either in vitro or in vivo. These findings provide substantial evidence for supporting a neurotrophic hypothesis of depression and specify BDNF targets for potential antidepressant interventions. Moreover, the antagonism between LV-shRNA BDNF knockdown and KXS may depend on multiple compounds with synergistic mechanisms that modulate the different signal transduction networks directly or indirectly, increasing BDNF expression and exerting its neuroprotective and antidepressant-like effects.


Assuntos
Antidepressivos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Antidepressivos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Preferências Alimentares/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Lentivirus/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa