Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Ann Rheum Dis ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164066

RESUMO

OBJECTIVES: T helper 9 (Th9) cells are recognised for their characteristic expression of the transcription factor PU.1 and production of interleukin-9 (IL-9), which has been implicated in various autoimmune diseases. However, its precise relationship with rheumatoid arthritis (RA) pathogenesis needs to be further clarified. METHODS: The expression levels of PU.1 and IL-9 in patients with RA were determined by ELISA, western blotting (WB) and immunohistochemical staining. PU.1-T cell-conditional knockout (KO) mice, IL-9 KO and IL-9R KO mice were used to establish collagen antibody-induced arthritis (CAIA), respectively. The inhibitor of PU.1 and IL-9 blocking antibody was used in collagen-induced arthritis (CIA). In an in vitro study, the effects of IL-9 were investigated using siRNAs and IL-9 recombinant proteins. Finally, the underlying mechanisms were further investigated by luciferase reporter analysis, WB and Chip-qPCR. RESULTS: The upregulation of IL-9 expression in patients with RA exhibited a positive correlation with clinical markers. Using CAIA and CIA model, we demonstrated that interventions targeting PU.1 and IL-9 substantially mitigated the inflammatory phenotype. Furthermore, in vitro assays provided the proinflammatory role of IL-9, particularly in the hyperactivation of macrophages and fibroblast-like synoviocytes. Mechanistically, we uncovered that PU.1 and IL-9 form a positive feedback loop in RA: (1) PU.1 directly binds to the IL-9 promoter, activating its transcription and (2) Th9-derived IL-9 induces PU.1 via the IL-9R-JAK1/STAT3 pathway. CONCLUSIONS: These results support that the PU.1-IL-9 axis forms a positive loop in Th9 dysregulation of RA. Targeting this signalling axis presents a potential target approach for treating RA.

2.
Cell Commun Signal ; 22(1): 521, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468646

RESUMO

Immune cell therapy based on chimeric antigen receptor (CAR) technology platform has been greatly developed. The types of CAR immune cell therapy have expanded from T cells to innate immune cells such as NK cells and macrophages, and the diseases treated have expanded from hematological malignancies to non-tumor fields such as infectious diseases and autoimmune diseases. Among them, CAR-T and CAR-NK therapy have observed examples of rapid remission in approved clinical trials, but the efficacy is unstable and plagued by tumor resistance. Trogocytosis is a special phenomenon of intercellular molecular transfer that is common in the immune system and is achieved by recipient cells through acquisition and internalization of donor cell-derived molecules and mediates immune effects. Recently, a novel short-term drug resistance mechanism based on trogocytosis has been proposed, and the bidirectional molecular exchange between CAR immune cells and tumor cells triggered by trogocytosis partially explains the long-term relapse phenomenon after treatment with CAR immune cells. In this review, we summarize the research progress of trogocytosis in CAR immunotherapy, discuss the influencing factors of trogocytosis and its direct and indirect interference with CAR immune cells and emphasize that the interference of trogocytosis can further release the potential of CAR immune cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Trogocitose , Evasão Tumoral , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Trogocitose/imunologia , Animais , Imunoterapia Adotiva/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos
3.
J Electrocardiol ; 84: 58-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520906

RESUMO

INTRODUCTION: Cardiovascular diseases (CVDs) remain a global health concern, and body mass index (BMI) is known to be associated with an increased risk of CVD, but the exact mechanisms underlying this relationship remain unclear. This study employs Mendelian randomization (MR) to investigate the causal association between BMI and electrocardiogram (ECG) indices, providing insights into potential pathways linking obesity to CVD. METHODS: We conducted a comprehensive MR study utilizing large-scale genetic and ECG data from diverse populations. Instrumental variables were selected from genome-wide association studies, ensuring their relevance to BMI. Causal relationships between BMI and ECG indices, including P wave duration, PR interval, QRS duration, and QT interval, were assessed using various MR methods, with inverse variance weighted (IVW) considered as the primary analysis. RESULTS: Our MR analysis revealed a significant positive causal association between higher BMI and P wave duration (ß = 8.078, 95% CI: 5.322 to 10.833, p < 0.001), suggesting a potential mechanism through which higher BMI may contribute to arrhythmogenic risks. However, no significant causal associations were observed between BMI and PR interval, QRS duration, or QT interval (all p > 0.005). In addition, our study also found that there is no horizontal pleiotropy between BMI and P wave duration, PR interval, QRS duration, and QT interval, suggesting that the conclusions of this study are robust. CONCLUSION: This study supports a causal relationship between elevated BMI and prolonged P wave duration, a marker of increased atrial arrhythmogenic risk. Further investigations are still needed to elucidate the underlying mechanisms.


Assuntos
Índice de Massa Corporal , Eletrocardiografia , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Humanos , Obesidade/genética , Doenças Cardiovasculares/genética , Feminino , Masculino , Fatores de Risco
4.
Ann Rheum Dis ; 82(2): 198-211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198439

RESUMO

OBJECTIVES: To uncover the function and underlying mechanism of an essential transcriptional factor, PU.1, in the development of rheumatoid arthritis (RA). METHODS: The expression and localisation of PU.1 and its potential target, FMS-like tyrosine kinase 3 (FLT3), in the synovium of patients with RA were determined by western blot and immunohistochemical (IHC) staining. UREΔ (with PU.1 knockdown) and FLT3-ITD (with FLT3 activation) mice were used to establish collagen antibody-induced arthritis (CAIA). For the in vitro study, the effects of PU.1 and FLT3 on primary macrophages and fibroblast-like synoviocytes (FLS) were investigated using siRNAs. Mechanistically, luciferase reporter assays, western blotting, FACS and IHC were conducted to show the direct regulation of PU.1 on the transcription of FLT3 in macrophages and FLS. Finally, a small molecular inhibitor of PU.1, DB2313, was used to further illustrate the therapeutic effects of DB2313 on arthritis using two in vivo models, CAIA and collagen-induced arthritis (CIA). RESULTS: The expression of PU.1 was induced in the synovium of patients with RA when compared with that in osteoarthritis patients and normal controls. FLT3 and p-FLT3 showed opposite expression patterns compared with PU.1 in RA. The CAIA model showed that PU.1 was an activator, whereas FLT3 was a repressor, of the development of arthritis in vivo. Moreover, results from in vitro assays were consistent with the in vivo results: PU.1 promoted hyperactivation and inflammatory status of macrophages and FLS, whereas FLT3 had the opposite effects. In addition, PU.1 inhibited the transcription of FLT3 by directly binding to its promoter region. The PU.1 inhibitor DB2313 clearly alleviated the effects on arthritis development in the CAIA and CIA models. CONCLUSIONS: These results support the role of PU.1 in RA and may have therapeutic implications by directly repressing FLT3. Therefore, targeting PU.1 might be a potential therapeutic approach for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteínas Proto-Oncogênicas , Sinoviócitos , Transativadores , Animais , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
5.
J Transl Med ; 21(1): 654, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740183

RESUMO

BACKGROUND: The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS: In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS: We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS: We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.


Assuntos
Antígeno CD47 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/terapia , Macrófagos , Fagocitose , Microambiente Tumoral
6.
Opt Express ; 31(2): 3153-3167, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785313

RESUMO

In recent years, the self-homodyne coherent (SHC) system and the constellation shaping (CS) technique have drawn considerable attention due to their abilities to further improve the transmission capacity for various scenarios. From the security point of view, the CS technique and the SHC infrastructure also provide new dimensions for encryption. We propose a high-security and reliable SHC system based on the CS technique and the digital chaos. With a four-dimensional hyperchaotic system, chaotic sequences are generated and used for the exclusive or operation, chaotic constant composition distribution matching, phase disturbance, and optical-layer time-delay disturbance. Moreover, 64-ary circular quadrature amplitude modulation (64CQAM) format is adopted for transmission due to its advantages of sensitivity to phase noise, immunity to conventional digital signal processing, and ability of time-mismatch masking, which is verified by simulation in a SHC system. Last, we conduct an experimental verification in a 20GBaud probabilistically shaped 64CQAM SHC system. Consequently, with a large-linewidth laser source, optical-layer security can be protected by time mismatches of tens of picoseconds. And the digital-layer security is protected by an enormous key space of 10127. The proposed scheme can provide reliable real-time encryption for the optical fiber transmission, serving as a potential candidate for the future high-capacity inter/intra-datacenter security interconnect.

7.
Opt Express ; 31(20): 32114-32125, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859021

RESUMO

Enabling communication networks with sensing functionality has attracted significant interest lately. The digital subcarrier multiplexing (DSCM) technology is widely promoted in short-reach scenarios for its inherent flexibility of fine-tuning the spectrum. Its compatibility with large-scale as-deployed coherent architectures makes it particularly suited for cost-sensitive integrated sensing and communication applications. In this paper, we propose a scheme of spectrally integrating the digital linear frequency modulated sensing signal into DSCM signals to achieve simultaneous sensing and communication through shared transmitter. Consequently, this cost-effective scheme has been demonstrated to achieve 100-Gb/s dual-polarization quadrature phase-shift keying (DP-QPSK) and 200-Gb/s dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) transmission with a distributed acoustic sensing sensitivity of 69 pε/Hz and 88 pε/Hz respectively, at a spatial resolution of 4 m.

8.
Opt Express ; 31(4): 5155-5166, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823804

RESUMO

Owing to the random birefringence of optical fibers, the recovery of the state of polarization (SOP) is urgently needed, especially in the nonlinear spectrum division multiplexing transmissions. Based on the variance of the polarization power ratio among symbols as the cost function, we propose a novel algorithm for the blind SOP recovery of eigenvalue communications. In the single eigenvalue transmissions with phase-shift keying or 16-ary amplitude and phase-shift keying constellations, at least 25.3 dB polarization extinction ratio can be achieved by using a block length of 30, even under 7 dB OSNR condition. It also shows that the proposed algorithm can be employed in multi-eigenvalue NFDM transmissions and full-spectrum modulated NFDM system. In the experiment, our proposed algorithm performs the same as the training symbol based method in back-to-back and less than 3000 km fiber link conditions; a maximum performance gain of 1.6 dB was obtained in ultra-long-haul condition (4300 km). It also shows that the impact of the polarization mode dispersion of a single-mode fiber on the algorithm is negligible.

9.
Opt Express ; 31(20): 32044-32057, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859015

RESUMO

Nonlinear frequency division multiplexing (NFDM) systems, especially the eigenvalue communications have the potential to overcome the nonlinear Shannon capacity limit. However, the baud rate of eigenvalue communications is typically restricted to a few GBaud, making it challenging to mitigate laser frequency impairments such as the phase noise and frequency offset (FO) using digital signal processing (DSP) algorithms in intradyne detections (IDs). Therefore, we introduce the polarization division multiplexing-self-homodyne detection (PDM-SHD) into the NFDM link, which could overcome the impact of phase noise and FO by transmitting a pilot carrier originating from the transmitter laser to the receiver through the orthogonal polarization state of signal. To separate the signal from the carrier at the receiver, a carrier to signal power ratio (CSPR) unrestricted adaptive polarization controlling strategy is proposed and implemented by exploiting the optical intensity fluctuation of the light in a particular polarization rather than its direct optical power as the feedback. Optical injection locking (OIL) is used subsequently to amplify optical power of pilot carrier and mitigate the impact of signal-signal beat interference (SSBI). Additionally, the effects of cross-polarization modulation (XPolM) and modulation instability (MI) in long haul transmission are explored and inhibited. The results show that the tolerable FO range is about 3.5 GHz, which is 17 times larger than the ID one. When 16-amplitude phase shift keying (APSK) or 64-APSK constellations are used, identical Q-factor performance can be obtained by using distributed feedback (DFB, ∼10 MHz) laser, external cavity laser (ECL, ∼100kHz), or fiber laser (FL, ∼100 Hz), respectively, which demonstrates that our proposed PDM-SHD eigenvalue communication structure is insensitive to the laser linewidth. Under the impact of cycle slip, the Q-factor difference of 16-APSK signal between the ECL-ID system and ECL-SHD system can be up to 8.73 dB after 1500 km transmission.

10.
Opt Lett ; 48(18): 4749-4752, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707893

RESUMO

This Letter demonstrates the high compatibility of the self-homodyne coherent detection (SHCD) transmission system with the Brillouin optical time-domain analyzer (BOTDA). By fully utilizing the remote delivered local oscillator (LO) light of the transmission system, the first, to the best of our knowledge, endogenously integrated BOTDA subsystem is achieved. The remote delivery of the homologous laser source in the SHCD system ensures the frequency match between the probe light and the pump light of the BOTDA. Furthermore, an injection-locked distributed feedback (DFB) laser is employed to amplify the LO and eliminate the impact induced by the Brillouin gain. The experiment demonstrates that a 16-km distributed temperature sensing based on BOTDA can be insensibly emerged into a 50-Gbaud DP-16QAM SHCD transmission system (400 Gbps/λ/core), achieving a spatial resolution of 3 meters and a temperature accuracy of 1°C. Remarkably, the auxiliary sensing module has negligible impact on the transmission.

11.
New Phytol ; 235(3): 939-952, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488501

RESUMO

Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation. In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019. We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species. Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.


Assuntos
Pinus , Quercus , Traqueófitas , Carboidratos , Ecossistema , Estações do Ano , Madeira , Xilema
12.
New Phytol ; 236(4): 1296-1309, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927942

RESUMO

Whether sources or sinks control wood growth remains debated with a paucity of evidence from mature trees in natural settings. Here, we altered carbon supply rate in stems of mature red maples (Acer rubrum) within the growing season by restricting phloem transport using stem chilling; thereby increasing carbon supply above and decreasing carbon supply below the restrictions, respectively. Chilling successfully altered nonstructural carbon (NSC) concentrations in the phloem without detectable repercussions on bulk NSC in stems and roots. Ring width responded strongly to local variations in carbon supply with up to seven-fold differences along the stem of chilled trees; however, concurrent changes in the structural carbon were inconclusive at high carbon supply due to large local variability of wood growth. Above chilling-induced bottlenecks, we also observed higher leaf NSC concentrations, reduced photosynthetic capacity, and earlier leaf coloration and fall. Our results indicate that the cambial sink is affected by carbon supply, but within-tree feedbacks can downregulate source activity, when carbon supply exceeds demand. Such feedbacks have only been hypothesized in mature trees. Consequently, these findings constitute an important advance in understanding source-sink dynamics, suggesting that mature red maples operate close to both source- and sink-limitation in the early growing season.


Assuntos
Acer , Madeira/fisiologia , Fotossíntese , Árvores/fisiologia , Carbono/análise , Folhas de Planta/fisiologia
13.
Opt Express ; 30(20): 35369-35381, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258490

RESUMO

We experimentally demonstrate a 4 × 10 Gb/s cost-effective coherent ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON) by the use of unequally-spaced 4-level pulse-amplitude modulation (UES-PAM-4) signaling. Because of the advantages of simple architecture and low cost, the simplified coherent receiver (SCR) based on the transmitted signal diversity (TS-D) has been reported, but its receiver sensitivity is constrained by the severe noise arising in the higher level of conventional PAM-4 signals. Here, we first experimentally demonstrate the UES-PAM-4 signaling for the SCR based on the TS-D, by altering the PAM-4 level spacing and the decision threshold through the gradient descent algorithm (GDA). Consequently, we can experimentally achieve -30.1 dBm RS for single wavelength at the bit-error ratio (BER) of 3.8 × 10-3. Compared with the conventional equally-spaced PAM-4 (ES-PAM-4) signaling, 1.3 dB RS enhancement can be secured after the 20-km standard single-mode fiber (SSMF) transmission. Meanwhile, the UES-PAM-4 signaling is experimentally verified for 4 × 10 Gb/s UDWDM-PON. An average RS of -29.6 dBm and 32.6 dB power budget are obtained after the 20-km SSMF transmission. The proposed UES-PAM-4 signaling with the RS enhancement is a promising candidate for the UDWDM-PON by utilizing the existing optical distribution network (ODN).

14.
Opt Lett ; 47(6): 1423-1426, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290329

RESUMO

In this Letter, we analytically model the impact of polarization crosstalk in the polarization-multiplexed carrier self-homodyne (PMC-SH) system with adaptive polarization control technology. When the optical paths of the signal and local oscillator (LO) are matched well, it is found that the polarization crosstalk results in a nonlinear shift on the constellation. Thus, we further propose a compensation scheme based on a low-complexity polynomial nonlinear equalizer (PNLE). Both simulation and experimental results validate our theoretical analysis. Moreover, the proposed PNLE-based compensation scheme achieves up to 1.23 dB tolerance improvement with respect to polarization crosstalk for 20 Gbaud 64QAM in the experiment.

15.
J Cell Mol Med ; 25(16): 7809-7824, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180121

RESUMO

Intracerebral hemorrhage (ICH) can induce intensively oxidative stress, neuroinflammation, and brain cell apoptosis. However, currently, there is no highly effective treatment available. Puerarin (PUE) possesses excellent neuroprotective effects by suppressing the NF-κB pathway and activating the PI3K/Akt signal, but its role and related mechanisms in ICH-induced early brain injury (EBI) remain unclear. In this study, we intended to observe the effects of PUE and molecular mechanisms on ICH-induced EBI. ICH was induced in rats by collagenase IV injection. PUE was intraperitoneally administrated alone or with simultaneously intracerebroventricular injection of LY294002 (a specific inhibitor of the PI3K/Akt signal). Neurological deficiency, histological impairment, brain edema, hematoma volume, blood-brain barrier destruction, and brain cell apoptosis were evaluated. Western blot, immunohistochemistry staining, reactive oxygen species (ROS) measurement, and enzyme-linked immunosorbent assay were performed. PUE administration at 50 mg/kg and 100 mg/kg could significantly reduce ICH-induced neurological deficits and EBI. Moreover, PUE could notably restrain ICH-induced upregulation of the NF-κB pathway, pro-inflammatory cytokines, ROS level, and apoptotic pathway and activate the PI3K/Akt signal. However, LY294002 delivery could efficaciously weaken these neuroprotective effects of PUE. Overall, PUE could attenuate ICH-induced behavioral defects and EBI possibly by PI3K/Akt signal stimulation-mediated inhibition of the NF-κB pathway, and this made PUE a potential candidate as a promising therapeutic option for ICH-induced EBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/complicações , Isoflavonas/farmacologia , NF-kappa B/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Vasodilatadores/farmacologia
16.
Plant Cell Environ ; 44(8): 2506-2521, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043242

RESUMO

How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.


Assuntos
Carbono/metabolismo , Floema/metabolismo , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Madeira/crescimento & desenvolvimento , Transporte Biológico , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Massachusetts , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Madeira/metabolismo , Xilema/metabolismo
17.
Opt Express ; 29(24): 39079-39095, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809278

RESUMO

For space division multiplexing self-homodyne coherent systems, we propose a novel digital in-service relative time delay (RTD) estimation method without any additional optoelectronic device. Taking advantage of the frequency-domain periodicity of the colored frequency modulation noise, we manage to find the peak with location reflecting the RTD in its autocorrelation function (ACF). The peak to average ratio is further enhanced by leveraging a low-pass differential finite impulse response filter for robust identification. By simulations, the method is validated to be feasible for various linewidths, formats (16QAM, 32QAM and 64QAM), and links up to 80 km. Particularly, it is proved to be inherently compatible with large-linewidth low-cost lasers for the 10-km link. Also, for a low-complexity implementation, we discuss the way to reduce the number of points used to calculate the ACF while maintaining the same dynamic range. Furthermore, we demonstrate a 50-GBaud 16-QAM experiment to investigate its performances. With received optical power varying from -11 dBm to -17 dBm, 216 points are sufficient to provide an estimation accuracy of standard deviation (STD) less than 0.089 ns for the RTD range of [2.6, 491.0 ns]. The STD can be lowered to 0.036 ns by adopting 218 points. Especially, at -11-dBm ROP, the highest performance has been achieved with an accuracy smaller than the symbol period (0.018-ns STD) and a RTD range of [1.5, 491.0 ns].

18.
Glob Chang Biol ; 27(1): 121-135, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33065763

RESUMO

Wood growth constitutes the main process for long-term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis-driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water-growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data-driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of -0.47 MPa for larch and -0.66 MPa for spruce, whereas photosynthesis in trees continues down to -1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.


Assuntos
Picea , Árvores , Ciclo do Carbono , Noruega , Solo , Água
19.
Opt Lett ; 46(12): 2819-2822, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129548

RESUMO

In this Letter, we propose a cost-efficient bi-directional (BiDi) polarization-multiplexed self-homodyne coherent detection (SHCD) system, in which only one fiber link and one adaptive polarization controller (APC) are required. By employing the correlation of the state of polarization (SOP) between the upstream and downstream light, one APC is capable of stabilizing SOPs of the counterpropagating waves at the same time. The signal and local oscillator (LO) can be optically split by a polarization beam splitter (PBS), relaxing pressure of the digital signal processing (DSP) and simplifying the coherent receiver. The impact induced by polarization cross talk and delay mismatch is collectively investigated by theoretical analysis and simulation. Finally, the proposed scheme is experimentally verified through 120 Gbit/s 16-quadrature amplitude modulation (16-QAM) transmission, achieving a satisfying laser-linewidth tolerance of 10 MHz and a polarization rotation tolerance of up to 45 rad/s.

20.
Opt Lett ; 46(14): 3368-3371, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264215

RESUMO

We experimentally demonstrated a geometric shaped (GS) 64-ary amplitude phase shift keying (64-APSK) eigenvalue transmission. The signal is modulated on the scatter coefficient of a single eigenvalue and linear minimum mean square error (LMMSE) estimator is used to reduce the noise. The channel response is estimated by transmitting a normally distributed 64-APSK constellation through a communication link. Based on the polar coordinates distribution of the received constellation, the diameter distributions for each circle can be obtained so that circles with larger noise can obtain larger judgment width. After optimization, the experimental results show that the Q-factor gain is 1.13 dB under 22 dB received optical signal to noise ratio (OSNR) configuration and 0.88 dB after 900 km transmission compared with normally distributed APSK configuration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa