Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1270-1282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877178

RESUMO

The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.


Assuntos
Interação Gene-Ambiente , Camundongos Endogâmicos C57BL , Tricuríase , Trichuris , Animais , Trichuris/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Camundongos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Linfócitos B/imunologia , Genótipo , Interferon gama/metabolismo , Linfócitos T/imunologia , Feminino , Masculino
2.
Nature ; 627(8004): 620-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448595

RESUMO

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.


Assuntos
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifas , Intestinos , Micotoxinas , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/imunologia , Hifas/crescimento & desenvolvimento , Hifas/imunologia , Hifas/metabolismo , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Micotoxinas/metabolismo , Virulência
3.
Discov Immunol ; 3(1): kyae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045514

RESUMO

The study of immune phenotypes in wild animals is beset by numerous methodological challenges, with assessment of detailed aspects of phenotype difficult to impossible. This constrains the ability of disease ecologists and ecoimmunologists to describe immune variation and evaluate hypotheses explaining said variation. The development of simple approaches that allow characterization of immune variation across many populations and species would be a significant advance. Here we explore whether serum protein concentrations and coarse-grained white blood cell profiles, immune quantities that can easily be assayed in many species, can predict, and therefore serve as proxies for, lymphocyte composition properties. We do this in rewilded laboratory mice, which combine the benefits of immune phenotyping of lab mice with the natural context and immune variation found in the wild. We find that easily assayed immune quantities are largely ineffective as predictors of lymphocyte composition, either on their own or with other covariates. Immunoglobulin G (IgG) concentration and neutrophil-lymphocyte ratio show the most promise as indicators of other immune traits, but their explanatory power is limited. Our results prescribe caution in inferring immune phenotypes beyond what is directly measured, but they do also highlight some potential paths forward for the development of proxy measures employable by ecoimmunologists.

4.
Sci Adv ; 9(51): eadh8310, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134275

RESUMO

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.


Assuntos
Sistema Imunitário , Comportamento Social , Camundongos , Animais , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa