RESUMO
Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNADNA relatedness with strains RITF1220 and RITF909, but < 60 % DNADNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1âmol% (T m).
Assuntos
Acacia/microbiologia , Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Understanding water use characteristics of plants and their interrelations is essential for achieving sustainable vegetation restoration of desert steppe. This study focused on five dominant plant species inhabiting two habitats: sierozem (Populus euphratica, Caragana liouana, and Stipa breviflora) and aeolian sandy soil (P. euphratica, Salix psammophila, and Leymus secalinus). We analyzed δ2H and δ18O isotopes in xylem, soil water, groundwater, and precipitation. By integrating soil water content and root data at various depths, we employed the MixSIAR model to quantitatively assess water utilization characteristics. Results revealed that these plants primarily relied on soil water during the growing season, with variations in water uptake depths at different growth stages. In the sierozem habitat, Populus exhibited significant variations in water source throughout the growing season. Early in the growing season (May to June), P. euphratica primarily extracted soil water from depths of 60-100 cm. During the peak growth period (July to August), water source shifted to depths of 100-200 cm, and returned to the depth of 0-20 cm by the end of the season (September). C. liouana initially utilized soil water at 60-100 cm but shifted to 0-20 cm during and after peak growth. S. breviflora predominantly tapped into soil water at 20-60 cm early and late in the growing season, but shifted to 0-20 cm during peak growth. In the aeolian sandy soil habitat, P. euphratica initially utilized soil water at 60-100 cm but shifted to 0-20 cm during and after peak growth. S. psammophila primarily utilized soil water at 60-100 cm early and during peak growth, shifting to 100-200 cm by the end of the season. L. secalinus mainly relied on soil water at 20-60 cm throughout the growing season. Soil moisture, seasonal precipitation variation, and root distribution influenced vegetation water use patterns. Throughout the growing season, trees, shrubs, and herbs in the sierozem habitat exhibited hydrological niche partitioning, which facilitated their water distribution and utilization. Conversely, dominant plants in the aeolian sandy soil habitat showed hydrological niche overlap, which intensified water competition, particularly between trees and shrubs. Therefore, species traits and soil properties should be given full consideration when selecting species combinations for vegetation restoration. Introducing species combinations with complementary water use characteristics is essential for fostering species diversity and sustainable vegetation restoration in desert steppe.
Assuntos
Clima Desértico , Ecossistema , Pradaria , Poaceae , Solo , Água , Água/análise , China , Solo/química , Poaceae/crescimento & desenvolvimentoRESUMO
OBJECTIVES: To observe the effect of mild moxibustion on stem cell factor (SCF)/tyrosine kinase receptor (c-kit) signaling pathway and visceral hypersensitivity of diarrhea predominant irritable bowel syndrome (IBS-D) model rats with liver-qi stagnation and spleen deficiency syndrome, so as to explore its mechanisms underlying improvement of IBS-D. METHODS: A total of 24 male Wistar rats were randomly divided into normal, IBS-D model, medication and mild moxibustion groups, with 6 rats in each group. The IBS-D model was established by glacial acetic acid (4%) enema plus restraint stress stimulation once daily for 14 days. Rats of the medication group were treated by gavage of pivamium bromide (15 mg/kg) once a day for 14 days. Mild moxibustion was applied to bilateral "Tianshu"(ST25), "Shangjuxu"(ST37) and "Taichong"(LR3) for 20 min, once daily for 14 consecutive days. After the intervention, the rats' general state of each group were observed. The rate of loose stools (LSR), and the minimum volume threshold for abdominal withdrawal reflex(AWR) were observed, and the open field test was used to assess the state of rats' motor activities (including rearing times, grooming times and total number of square-crossings in 5 min). Morphological changes of the colon tissue were observed by hematoxylin-eosin (H.E.) staining, The count of mast cells (MC) in the colon tissues was determined by toluidine blue staining. Contents of serum 5-hydroxytryptamine (5-HT) and substance P (SP) were determined by enzyme-linked immunosorbent assay (ELISA). The relative expression levels of SCF and c-kit mRNAs and proteins in the colon tissues were detected by real-time quantitative PCR and Western blot, respectively. RESULTS: Compared with the normal group, the body weight, minimum volume threshold of AWR, total numbers of square-crossing, rearing times and grooming times were significantly decreased (P<0.05), and the LSR, number of MC, contents of 5-HT and SP, and the expression levels of SCF and c-kit mRNAs and proteins were considerably increased in the model group (P<0.01). In comparison with the model group after interventions, the body weight, minimum volume threshold of AWR, total numbers of square-crossing, rearing times and grooming times were apparently increased in both medication and moxibustion groups (P<0.05, P<0.01), and the LSR, number of MC, 5-HT and SP contents in both medication and moxibustion groups, and the expression levels of SCF and c-kit mRNA and protein in the moxibustion group (not in the medication group) were obviously decreased (P<0.05, P<0.01). H.E. staining showed that in the model group, a small amount of inflammatory cells in the mucosal layer of colon tissue could be seen. in the medication group, a small number of lymphocytes in colon tissue were observed, while in the mild moxibustion group, a small amount of neutrophils in colon tissue were observed. CONCLUSIONS: Mild moxibustion can reduce visceral hypersensitivity and improve abdominal pain, diarrhea and locomotion state in IBS-D rats with liver-qi stagnation and spleen deficiency syndrome, which may be associated with its functions in reducing the number of MC and the levels of 5-HT and SP and down-regulating the activities of SCF/c-kit signaling pathway.
Assuntos
Diarreia , Síndrome do Intestino Irritável , Fígado , Moxibustão , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Baço , Fator de Células-Tronco , Animais , Humanos , Masculino , Ratos , Pontos de Acupuntura , Diarreia/metabolismo , Diarreia/terapia , Diarreia/genética , Modelos Animais de Doenças , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/genética , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Ratos Wistar , Baço/metabolismo , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/genéticaRESUMO
It remains unclear how symbiotic microbes impact the growth of peanuts when they are exposed to the pollutants cadmium (Cd) and microplastics (MPs) simultaneously. This study aimed to investigate the effects of endophytic bacteria Bacillus velezens SC60 and arbuscular mycorrhizal fungus Rhizophagus irregularis on peanut growth and rhizosphere microbial communities in the presence of Cd at 40 (Cd40) or 80 (Cd80) mg kg-1 combined without MP or the presence of low-density polyethylene (LDPE) and poly butyleneadipate-co-terephthalate (PBAT). This study assessed soil indicators, plant parameters, and Cd accumulation indicators. Results showed that the application of R. irregularis and B. velezens significantly enhanced soil organic carbon and increased Cd content under the conditions of Cd80 and MPs co-pollution. R. irregularis and B. velezens treatment increased peanut absorption and the enrichment coefficient for Cd, with predominate concentrations localized in the peanut roots, especially under combined pollution by Cd and MPs. Under treatments with Cd40 and Cd80 combined with PBAT pollution, soil microbes Proteobacteria exhibited a higher relative abundance, while Actinobacteria showed a higher relative abundance under treatments with Cd40 and Cd80 combined with LDPE pollution. In conclusion, under the combined pollution conditions of MPs and Cd, the co-treatment of R. irregularis and B. velezens effectively immobilized Cd in peanut roots, impeding its translocation to the shoot.
Assuntos
Glomeromycota , Micorrizas , Poluentes do Solo , Cádmio/toxicidade , Microplásticos , Plásticos , Arachis , Carbono , Polietileno , Solo , Raízes de Plantas , Bactérias , Poluição Ambiental , Poluentes do Solo/toxicidadeRESUMO
It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.
RESUMO
Dryland wheat has gone through double selections, including natural and artificial selection, in the evolutionary process. During this process, artificial selection played a key role in variety domestication and improvement. This paper summarized a few relatively independent but interrelated issues including evolutionary characteristics, physiological plasticity, morphological plasticity and population attribute transition in dryland wheat under artificial selection. It provided an overview on physiological and ecological mechanism of dryland wheat adapting to stress conditions, and an outline of wheat evolution route. In the long-term evolutionary history of dryland wheat from diploid to hexaploid, natural selection acted as a key role for wheat adaptation to stress environments. With the intervention of artificial selection, the yield-oriented phenotyping has been continuously strengthened, and morphological characteristics of wheat tended to display a fine adaptation to adverse environments at population level. As a product of artificial selection, water and nutrient use efficiencies were improved constantly, and biomass allocation pattern showed the characteristics of lowering below-ground parts and increasing above-ground parts. In the meantime, the tolerance to density and high temperature stresses tended to be enhanced, while photosynthetic rate per unit area was decreased gradually. Dryland wheat production was a complex population process, rather than a simple individual performance. Artificial selection increased population fitness and individual reproductive allocation in dryland wheat, which in turn strengthened its coordination with environment, but weakened its attributes of natural population. This paper also drew an outline of dryland wheat evolution, and provided a few suggestions for breeding strategies and cultivation management of dryland wheat under climate change.
Assuntos
Adaptação Fisiológica , Fotossíntese , Triticum/crescimento & desenvolvimento , Biomassa , ÁguaRESUMO
Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.
RESUMO
Arbuscular mycorrhiza (AM) is one of the most widely distributed and the most important mutualistic symbionts in terrestrial ecosystems, playing a significant role in enhancing plant resistance to stresses, remediating polluted environments, and maintaining ecosystem stabilization and sustainable productivity. The structural characteristics of AM are the main indicators determining the mycorrhizal formation in root system, and have close relations to the mycorrhizal functions. This paper summarized the structural characteristics of arbuscules, vesicles, mycelia and invasion points of AM, and analyzed the relationships between the Arum (A) type arbuscules, Paris (P) type arbuscules, vesicles, and external mycelia and their functions in improving plant nutrient acquisition and growth, enhancing plant resistance to drought, waterlogging, salinity, high temperature, diseases, heavy metals toxicity, and promoting toxic organic substances decomposition and polluted and degraded soil remediation. The factors affecting the AM structure and functions as well as the action mechanisms of mycorrhizal functions were also discussed. This review would provide a basis for the systemic study of AM structural characteristics and functional mechanisms and for evaluating and screening efficient AM fungal species.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Micorrizas/citologia , Micorrizas/fisiologiaRESUMO
The aim of this study is to assess the mycorrhizal status of Eucalyptus plantations in south China and to determine the need for inoculation. In four provinces in south China, 155 plantations were sampled for sporocarps of ectomycorrhizal (ECM) fungi, spores of arbuscular mycorrhizal (AM) fungi, and mycorrhizas over 2 years. This study revealed a low above-ground diversity of ECM fungi consisting of 15 taxa fruiting beneath Eucalyptus plantations. The most common ECM genera were Scleroderma and Pisolithus, but they were infrequent. A total of 21 AM fungi, mostly Glomus species, were recognized from spores collected from eucalypt plantations. Four Glomus species were frequently present in soils, but spore density and relative abundance of AM fungi were generally low. Eucalypt roots from all plantation sites were poorly colonized by either ECM fungi or AM fungi. A bioassay with E. urophylla as a bait host, using soils collected from 11 eucalypt plantations, confirmed low levels of inoculum of both ECM and AM fungi in field soil. This is the first integrated study on the mycorrhizal status of eucalypt plantations in China. Findings from this research can be used to encourage adoption of mycorrhizal technology by eucalypt nurseries in the region. The potential of using spores of compatible ECM fungi or collections for forest nurseries is discussed.
Assuntos
Agricultura , Eucalyptus/microbiologia , Fungos/isolamento & purificação , Micorrizas , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , China , Conservação dos Recursos Naturais/métodos , Eucalyptus/crescimento & desenvolvimento , Fungos/classificação , Fungos/fisiologia , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Esporos Fúngicos/fisiologiaRESUMO
Plantation forestry with exotic trees in south China needs compatible symbionts to improve the growth of seedlings in nurseries and to enhance establishment and growth in the field. Scleroderma, a potentially suitable symbiont for inoculation, is not being used in containerized nurseries in the region due to poor knowledge of its host range. The ability of 15 collections of Scleroderma, nine from Australia and six from Asia, to colonize and promote growth of four important exotic plantation trees (Eucalyptus globulus Labill., Eucalyptus urophylla ST Blake, Pinus elliottii Engl., and Pinus radiata D. Don) was examined in a nursery potting mix. There was generally low host specificity of Scleroderma between tree genera. At 12 weeks after inoculation, 13 to 14 of the 15 spore collections formed ectomycorrhizas on seedlings of eucalypts or pines. The extent of colonization differed between spore treatments with two or four collections forming abundant mycorrhizas (>50% fine roots colonized) on E. globulus or E. urophylla, respectively, and three or five on P. radiata or P. elliottii, respectively. Three collections from Australia strongly colonized all hosts resulting in 26 to 100% of short roots being colonized. Chinese Scleroderma collections resulted in fewer mycorrhizas on eucalypts than on pines. Inoculation stimulated the growth (shoot height and dry weight) of eucalypt and pine seedlings by up to 105% where Scleroderma mycorrhizas developed. The results suggest that there is a need to source Scleroderma from outside China for inoculating eucalypts in Chinese nurseries whereas Chinese collections of Scleroderma could be used in pine nurseries. Further screening of Australian and Chinese Scleroderma should be performed in Chinese nurseries and in the field before final commercial decisions are made.