Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4672-4681, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587873

RESUMO

The bifunctional oxygen electrocatalyst is the Achilles' heel of achieving robust reversible Zn-air batteries (ZABs). Herein, durable bifunctional oxygen electrocatalysis in alkaline media is realized on atomic Fe-N4-C sites reinforced by NixCo3-xO4 (NixCo3-xO4@Fe1/NC). Compared with that of pristine Fe1/NC, the stability of the oxygen evolution reaction (OER) is increased 10 times and the oxygen reduction reaction (ORR) performance is also improved. The steric hindrance alters the valence electron at the Fe-N4-C sites, resulting in a shorter Fe-N bond and enhanced stability of the Fe-N4-C sites. The corresponding solid-state ZABs exhibit an ultralong lifespan (>460 h at 5 mA cm-2) and high rate performance (from 2 to 50 mA cm-2). Furthermore, the structural evolution of NixCo3-xO4@Fe1/NC before and after the OER and ORR as well as charge-discharge cycling is explored. This work develops an efficient strategy for improving bifunctional oxygen electrocatalysis and possibly other processes.

2.
Environ Res ; 210: 112870, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35150714

RESUMO

With the boom of modern industry, the demand for precious metals palladium (Pd) and gold (Au) is increasing. However, the discharge of Pd(II) and Au(III) wastewater has caused environmental pollution and shortage of resources. Here, a new metal-organic frameworks adsorbent (MOF-AFH) was synthesized to efficiently separate Pd(II) and Au(III) from the water. The adsorption behavior of Pd(II) and Au(III) was explored at the same time. When gold and palladium are adsorbed separately, the adsorption capacity of gold and palladium is 389.02 mg/g and 191.27 mg/g, respectively. The equilibration time is 3 h. When gold and palladium coexist, the adsorption capacities of Au(III) and Pd(II) are 238.71 and 115.02 mg/g, respectively. The experimental results show that the adsorption of Pd(II) and Au(III) on MOF-AFH is a single-layer chemical adsorption, which is an endothermic process. MOF-AFH has excellent selectivity and after MOF-AFH is repeatedly used 4 times, the removal effect can still reach more than 90%. The adsorption mechanisms include reduction reaction and chelation with N and O-containing functional groups on the adsorbent. There is also electrostatic interaction for Au(III) adsorption. The adsorbent can be used to efficiently recover gold and palladium from wastewater.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Ouro , Cinética , Paládio , Águas Residuárias
3.
ACS Nano ; 18(13): 9678-9687, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38522087

RESUMO

The unsatisfactory adsorption and activation of CO2 suppress electrochemical reduction over a wide potential window. Herein, the built-in electric field (BIEF) at the CeO2/In2O3 n-n heterostructure realizes the C1 (CO and HCOO-) selectivity over 90.0% in a broad range of potentials from -0.7 to -1.1 V with a maximum value of 98.7 ± 0.3% at -0.8 V. In addition, the C1 current density (-1.1 V) of the CeO2/In2O3 heterostructure with a BIEF is about 2.0- and 3.2-fold that of In2O3 and a physically mixed sample, respectively. The experimental and theoretical calculation results indicate that the introduction of CeO2 triggered the charge redistribution and formed the BIEF at the interfaces, which enhanced the interfacial adsorption and activation of CO2 at low overpotentials. Furthermore, the promoting effect was also extended to CeO2/In2S3. This work gives a deep understanding of BIEF engineering for highly efficient CO2 electroreduction over a wide potential window.

4.
ACS Nano ; 17(19): 18688-18705, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725796

RESUMO

Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.

5.
Chem Commun (Camb) ; 59(87): 13034-13037, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37842963

RESUMO

It is an urgent need to improve the depth of discharge (DOD) of Zn-air batteries (ZABs), considering that most reported ZABs with long cycle life are realized at low DOD (<1%). In this work, our solid-state ZABs achieved a long cycle life of more than 220 h at 3.2% DOD (the discharge capacity of 10 mA h cm-2 per cycle). Moreover, benefiting from excellent bifunctional oxygen electrocatalysts (Fe@BNC) and robust Zn|electrolyte interface, the ZABs displayed a long cycle life of 120 h even at high DOD of 23.4% and large discharge capacity of 72 mA h cm-2. Additionally, the impact of Zn|electrolyte interface on the cycle time at different DODs is analysed and discussed. The unstable interface exacerbated the dendrite growth and uneven deposition of Zn at high DOD, leading to the decay of the cycle life. The work gives insights into the mechanism of the effect of DOD on the cycle life of the batteries.

6.
J Hazard Mater ; 425: 127771, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34961630

RESUMO

A new zirconium-based adsorption material (UiO-66-AMP) was prepared by modifying UiO-66-NH2 with 5-adenosine to effectively remove Pb(II) and Cr(VI) from wastewater. The SEM, EDS, XRS and FT-IR characterization confirmed the successful synthesis of UiO-66-AMP. We conducted a sets of experiments to test the adsorption effectiveness of UiO-66-AMP for Pb(II) and Cr(VI). The maximum adsorption capacity of UiO-66-AMP for Cr(VI) (pH=2) and Pb(II) (pH=4) are 196.60 and 189.69 mg/g, respectively. The adsorption process conforms to the pseudo-second-order and Langmuir models, which indicates that the adsorption is a single-layer chemical process. Gibbs free energy (∆G) indicates that the adsorption of Pb(II) is an exothermic reaction, while the adsorption of Cr(VI) is an endothermic reaction. At the same time, the adsorbent maintains excellent adsorption capacity at least after 4 cycles. The good adsorption performance of UiO-66-AMP towards the metal ions was attributed to the surface complexation and electrostatic interactions. Therefore, the new adsorbent has obvious application prospect to remove Pb(II) and Cr(VI) from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adenosina , Adsorção , Cromo , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Estruturas Metalorgânicas , Ácidos Ftálicos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
7.
Int J Biol Macromol ; 194: 781-789, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826454

RESUMO

The recovery of gold from wastewater has always been a research hotspot. Here, a novel chitosan-based adsorbent (CS-DPDM) was successfully synthesized by functionalizing chitosan with (N, N-(2-aminoethyl))-2,6-pyridinedicarboxamide. The adsorbent was analyzed by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and zeta potential method (Zeta). To investigate the adsorption performance of CS-DPDM for Au(III), the effects of pH, temperature, adsorption time and initial concentration were discussed. The maximum adsorption capacity of CS-DPDM for Au(III) at pH 5.0 is 659.02 mg/g at 318 K. The adsorption is a spontaneous endothermic behavior, and the adsorption process follows the quasi-second-order kinetic and Langmuir isotherm models, indicating that a single layer of chemical adsorption may have occurred on the surface of the adsorbent. The competitive adsorption and repetitive experiments show that CS-DPDM has considerable selectivity and reusability for Au(III). X-ray photoelectron spectroscopy (XPS) results show that N and O functional groups adsorb Au(III) on the surface of CS-DPDM through electrostatic, chelation and reduction. These results indicate that CS-DPDM has broad application prospects in recovering gold ions from aqueous solutions.


Assuntos
Quitosana/química , Ouro/química , Águas Residuárias/química , Adsorção
8.
J Colloid Interface Sci ; 601: 272-282, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34082232

RESUMO

Efficient removal of gold ions from wastewater has become a hot research topic. A new metal-organic framework material (PAR-UiO-66) was prepared by post-modification of UiO-66-NH2. A series of characterizations proved the successful preparation of PAR-UiO-66. The batch adsorption experiment was carried out. Under the room temperature (298 K) of and pH 4.0, the optimal adsorption capacity of PAR-UiO-66 for gold ions was 683.45 mg/g, which was an increase of 426.8 mg/g compared with that of UiO-66-NH2. The adsorption of gold ions on PAR-UiO-66 accords with pseudo-second-order kinetics and Langmuir isotherm modles. The adsorption process was endothermic and spontaneous. PAR-UiO-66 has good selectivity and still has 92.5% adsorption efficiency after five repeated adsorptions. The adsorption mechanism is electrostatic attraction, reduction and chelation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Água , Poluentes Químicos da Água/análise
9.
Int J Biol Macromol ; 177: 29-39, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33607139

RESUMO

A chitosan-based adsorbents (CS-Ninhydrin) was prepared by grafting ninhydrin for Pb(II) ions adsorption. SEM-EDS, XRD and FTIR analysis were used to characterize the synthesized CS-Ninhydrin. The static adsorption experiments showed that CS-Ninhydrin had a good removal rate for Pb(II) ions in a wide range of pH 3 to 7, quickly reached equilibrium (120 min) and had a higher adsorption capacity (196 mg/g). Pseudo second-order and Langmuir models showed that the adsorption process of Pb(II) by CS-Ninhydrin was a single-layer chemical adsorption. Temperature experiments showed that the reaction was a spontaneous exothermic process. In the wastewater experiment, CS-Ninhydrin showed an excellent selectivity to Pb(II) ions. The reusability of CS-Ninhydrin was perfect after five adsorption-desorption cycles. The main adsorption mechanism was the chelating and electrostatic action between N and O groups in CS-Ninhydrin and Pb(II) ions. Therefore, the new adsorbent CS-Ninhydrin was expected to promote the wide application of chitosan in Pb(II) adsorption.


Assuntos
Quitosana/química , Íons/química , Chumbo/química , Ninidrina/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
J Hazard Mater ; 413: 125278, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609864

RESUMO

A novel metal-organic framework (UiO-66-PTC) for efficient removal of Pb2+ ions from wastewater has been prepared by using 4-phenyl-3-thiosemicarbazide as the modifier. Various characterizations showed that UiO-66-PTC was successfully synthesized. The absorption results showed that the maximum adsorption capacity of Pb(II) is 200.17 mg/g at 303 K and optimal pH 5. The adsorption kinetic follows the pseudo-second-order model and the adsorption isotherms fit the Langmuir model. This shows that Pb(II) is a single-layer adsorption on the surface of the adsorbent and the rate-controlling step is chemical adsorption. The thermodynamic results show that the adsorption process can proceed spontaneously, belong to the exothermic reaction. The adsorbent can selectively uptake lead ions from wastewater containing multiple interfering ions. After four adsorption and desorption cycles, the adsorption efficiency is still high. The adsorption mechanism of Pb(II) on the adsorbent is mainly through the chelation of Pb(II) with N and S atoms. These results indicate that UiO-66-PTC is an effective material for efficiently and selectivity removal of Pb(II) from solution, which is of practical significance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa