Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
4.
Shock ; 61(1): 112-119, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010092

RESUMO

ABSTRACT: Patients 65 years and older account for an increasing proportion of traumatic brain injury (TBI) patients. Aged TBI patients experience increased morbidity and mortality compared with young TBI patients. We previously demonstrated a marked accumulation of CD8 + T-cells within the brains of aged TBI mice compared with young TBI mice. Therefore, we hypothesized that blocking peripheral T-cell infiltration into the injured brain would improve neurocognitive outcomes in aged mice after TBI. Young and aged male C57BL/6 mice underwent TBI via controlled cortical impact versus sham injury. Two hours after injuries, mice received an anti-CD49d antibody (aCD49d Ab) to block peripheral lymphocyte infiltration or its isotype control. Dosing was repeated every 2 weeks. Mortality was tracked. Neurocognitive testing for anxiety, associative learning, and memory was assessed. Motor function was evaluated. Plasma was collected for cytokine analysis. Flow cytometry was used to phenotype different immune cells within the brains. Consequently, aCD49d Ab treatment significantly improved post-TBI survival, anxiety level, associative learning, memory, and motor function in aged mice 2 months after TBI compared with isotype control treated mice. aCD49d Ab treatment augmented T H 2 response in the plasma of aged mice 2 months after TBI compared with isotype control-treated mice. Notably, aCD49d Ab treatment significantly reduced activated CD8 + cytotoxic T-cells within aged mouse brains after TBI. Contrastingly, no difference was detected in young mice after aCD49d Ab treatment. Collectively, aCD49 Ab treatment reduced T-cells in the injured brain, improved survival, and attenuated neurocognitive and gait deficits. Hence, aCD49d Ab may be a promising therapeutic intervention in aged TBI subjects-a population often excluded in TBI clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Animais , Camundongos , Masculino , Idoso , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo , Citocinas , Modelos Animais de Doenças
5.
Children (Basel) ; 11(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062269

RESUMO

BACKGROUND: Idiopathic juvenile osteoporosis (IJO) is a rare condition characterized by low bone mass that can increase the risk of fractures in children. Treatment options for these patients are limited as the molecular mechanisms of disease initiation and progression are incompletely understood. Sclerostin inhibits canonical Wnt signaling, which is important for the bone formation activity of osteoblasts, and elevated sclerostin has been implicated in adult osteoporosis. OBJECTIVE: To evaluate the role of sclerostin in IJO, high-resolution confocal microscopy analyses were performed on bone biopsies collected from 13 pediatric patients. METHODS: Bone biopsies were stained with sclerostin, and ß-catenin antibodies showed elevated expression across osteocytes and increased sclerostin-positive osteocytes in 8 of the 13 total IJO patients (62%). RESULTS: Skeletal sclerostin was associated with static and dynamic histomorphometric parameters. Further, colocalization analyses showed that bone sclerostin colocalized with phosphorylated ß-catenin, a hallmark of Wnt signaling that indicates Wnt inhibition. In contrast, sclerostin-positive osteocytes were not colocalized with an "active" unphosphorylated form of ß-catenin. CONCLUSIONS: These results support a model that altered levels of sclerostin and Wnt signaling activity occur in IJO patients.

6.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948775

RESUMO

Patients aged 65 years and older account for an increasing proportion of patients with traumatic brain injury (TBI). Older TBI patients experience increased morbidity and mortality compared to their younger counterparts. Our prior data demonstrated that by blocking α4 integrin, anti-CD49d antibody (aCD49d Ab) abrogates CD8+ T-cell infiltration into the injured brain, improves survival, and attenuates neurocognitive deficits. Here, we aimed to uncover how aCD49d Ab treatment alters local cellular responses in the aged mouse brain. Consequently, mice incur age-associated toxic cytokine and chemokine responses long-term post-TBI. aCD49d Ab attenuates this response along with a T helper (Th)1/Th17 immunological shift and remediation of overall CD8+ T cell cytotoxicity. Furthermore, aCD49d Ab reduces CD8+ T cells exhibiting higher effector status, leading to reduced clonal expansion in aged, but not young, mouse brains with chronic TBI. Together, aCD49d Ab is a promising therapeutic strategy for treating TBI in the older people. Graphic abstract: Aged brains after TBI comprise two pools of CD8 + T cells . The aged brain has long been resided by a population of CD8 + T cells that's exhaustive and dysfunctional. Post TBI, due to BBB impairment, functional CD8 + T cells primarily migrate into the brain parenchyma. Aged, injury-associated microglia with upregulated MHC class I molecules can present neoantigens such as neuronal and/or myelin debris in the injured brains to functional CD8+ T, resulting in downstream CD8+ T cell cytotoxicity. aCD49d Ab treatment exerts its function by blocking the migration of functional effector CD8 + T cell population, leading to less cytotoxicity and resulting in improved TBI outcomes in aged mice.

7.
Shock ; 59(2): 267-276, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730818

RESUMO

ABSTRACT: Aged traumatic brain injury (TBI) patients suffer increased mortality and long-term neurocognitive and neuropsychiatric morbidity compared with younger patients. Microglia, the resident innate immune cells of the brain, are complicit in both. We hypothesized that aged microglia would fail to return to a homeostatic state after TBI and adopt a long-term injury-associated state within aged brains compared with young brains after TBI. Young and aged male C57BL/6 mice underwent TBI via controlled cortical impact versus sham injury and were sacrificed 4 months post-TBI. We used single-cell RNA sequencing to examine age-associated cellular responses after TBI. Brains were harvested, and CD45+ cells were isolated via fluorescence-activated cell sorting. cDNA libraries were prepared using the 10x Genomics Chromium Single Cell 3' Reagent Kit, followed by sequencing on a HiSeq 4,000 instrument and computational analyses. Post-injury, aged mice demonstrated a disparate microglial gene signature and an increase in infiltrating T cells compared with young adult mice. Notably, aged mice post-injury had a subpopulation of age-specific, immune-inflammatory microglia resembling the gene profile of neurodegenerative disease-associated microglia with enriched pathways involved in leukocyte recruitment and brain-derived neurotrophic factor signaling. Meanwhile, post-injury, aged mice demonstrated heterogeneous T-cell infiltration with gene profiles corresponding to CD8 effector memory, CD8 naive-like, CD8 early active T cells, and Th1 cells with enriched pathways, such as macromolecule synthesis. Taken together, our data showed that the aged brain had an age-specific gene signature change in both T-cell infiltrates and microglia, which may contribute to its increased vulnerability to TBI and the long-term sequelae of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Animais , Masculino , Camundongos , Fatores Etários , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Linfócitos T , Adaptação Fisiológica
8.
Shock ; 58(4): 287-294, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256625

RESUMO

ABSTRACT: Background: Traumatic brain injury (TBI) is an underrecognized public health threat. The constitutive activation of microglia after TBI has been linked to long-term neurocognitive deficits and the progression of neurodegenerative disease. Evolving evidence indicates a critical role for the gut-brain axis in this process. Specifically, TBI has been shown to induce the depletion of commensal gut bacteria. The resulting gut dysbiosis is associated with neuroinflammation and disease. Hypothesis: We hypothesized that fecal microbiota transplantation would attenuate microglial activation and improve neuropathology after TBI. Methods: C57Bl/6 mice were subjected to severe TBI (n = 10) or sham injury (n = 10) via an open-head controlled cortical impact. The mice underwent fecal microbiota transplantation (FMT) or vehicle alone via oral gavage once weekly for 4 weeks after injury. At 59 days after TBI, mice underwent three-dimensional, contrast-enhanced magnetic resonance imaging. Following imaging, mice were killed, brains harvested at 60 DPI, and CD45+ cells isolated via florescence-activated cell sorting. cDNA libraries were prepared using the 10x Genomics Chromium Single Cell 3' Reagent kit followed by sequencing on a HiSeq4000 instrument, and computational analysis was performed. Results: Fecal microbiota transplantation resulted in a >marked reduction of ventriculomegaly (P < 0.002) and preservation of white matter connectivity at 59 days after TBI (P < 0.0001). In addition, microglia from FMT-treated mice significantly reduced inflammatory gene expression and enriched pathways involving the heat-shock response compared with mice treated with vehicle alone. Conclusions: We hypothesized that restoring gut microbial community structure via FMT would attenuate microglial activation and reduce neuropathology after TBI. Our data demonstrated significant preservation of cortical volume and white matter connectivity after an injury compared with mice treated with vehicle alone. This preservation of neuroanatomy after TBI was associated with a marked reduction in inflammatory gene expression within the microglia of FMT-treated mice. Microglia from FMT-treated mice enriched pathways in the heat-shock response, which is known to play a neuroprotective role in TBI and other neurodegenerative disease processes.


Assuntos
Lesões Encefálicas Traumáticas , Microbiota , Doenças Neurodegenerativas , Camundongos , Animais , Transplante de Microbiota Fecal , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Cromo/metabolismo
9.
Shock ; 57(6): 251-259, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759305

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is an underrecognized public health threat. Survivors of TBI often suffer long-term neurocognitive deficits leading to the progressive onset of neurodegenerative disease. Recent data suggests that the gut-brain axis is complicit in this process. However, no study has specifically addressed whether fecal microbiota transfer (FMT) attenuates neurologic deficits after TBI. HYPOTHESIS: We hypothesized that fecal microbiota transfer would attenuate neurocognitive, anatomic, and pathologic deficits after TBI. METHODS: C57Bl/6 mice were subjected to severe TBI (n = 20) or sham-injury (n = 20) via an open-head controlled cortical impact. Post-injury, this cohort of mice underwent weekly oral gavage with a slurry of healthy mouse stool or vehicle alone beginning 1 h post-TBI followed by behavioral testing and neuropathologic analysis. 16S ribosomal RNA sequencing of fecal samples was performed to characterize gut microbial community structure pre- and post-injury. Zero maze and open field testing were used to evaluate post-traumatic anxiety, exploratory behavior, and generalized activity. 3D, contrast enhanced, magnetic resonance imaging was used to determine differences in cortical volume loss and white matter connectivity. Prior to euthanasia, brains were harvested for neuropathologic analysis. RESULTS: Fecal microbiome analysis revealed a large variance between TBI, and sham animals treated with vehicle, while FMT treated TBI mice had restoration of gut dysbiosis back to levels of control mice. Neurocognitive testing demonstrated a rescue of normal anxiety-like and exploratory behavior in TBI mice treated with FMT. FMT treated TBI mice spent a greater percentage of time (22%, P = 0.0001) in the center regions of the Open Field as compared to vehicle treated TBI mice (13%). Vehicle-treated TBI animals also spent less time (19%) in the open areas of zero maze than FMT treated TBI mice (30%, P = 0.0001). Comparing in TBI mice treated with FMT, MRI demonstrated a marked attenuation in ventriculomegaly (P < 0.002) and a significant change in fractional anisotropy (i.e., loss of white matter connectivity) (P < 0.0001). Histologic analysis of brain sections revealed a FMT- injury dependent interaction in the microglia/macrophage-specific ionized calcium-binding protein, Iba1 (P = 0.002). CONCLUSION: These data suggest that restoring a pre-injury gut microbial community structure may be a promising therapeutic intervention after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Lesões Encefálicas Traumáticas/patologia , Disbiose/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Humanos , Camundongos
10.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586677

RESUMO

Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.


Assuntos
Envelhecimento/imunologia , Microambiente Celular/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Envelhecimento/patologia , Animais , Humanos , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa