RESUMO
Organic light-emitting diodes (OLEDs) are used almost exclusively for display purposes. Even when implemented as a sensing component, it is rarely in a manner that exploits the possible compliance of the OLED. Here it is shown that OLEDs can be integrated into compliant mechanical micro-devices making a new range of applications possible. A light-modulating pressure sensor is considered, whereby the OLED is integrated with a silicon membrane. It is shown that such devices have potential and advantages over current measurement techniques. An analytical model has been developed that calculates the response of the device. Ray tracing numerical simulations verify the theory and show that the design can be optimized to maximize the resolution of the sensor.
RESUMO
Within various unstructured industrial environments, there is often the requirement to conduct remote engineering tasks, such as sampling the structure for analysis prior to decommissioning. Most existing tools are simply not dexterous enough to fulfil this task, and thus new technology is required. We describe here a simple, lightweight, and water-resistant collaborative dual-arm continuum robot system which can aid in this task. To improve the kinematic accuracy of the system, a class of flexible hinges have been combined with a conventional continuum robot configuration. The thickness and width of said flexible hinges can be adjusted to adapt to various tasks. Kinematic and stiffness models have further been developed, incorporating the influence of these flexible hinges. A set of experiments have been conducted to validate the proposed model and demonstrate the advantages of the platform. It was found that the kinematic accuracy of the continuum robot can be improved by a factor of around 10 with the aid of said hinges.
RESUMO
The spine or 'back' has many functions including supporting our body frame whilst facilitating movement, protecting the spinal cord and nerves and acting as a shock absorber. In certain instances, individuals may develop conditions that not only cause back pain but also may require additional support for the spine. Common movements such as twisting, standing and bending motions could exacerbate these conditions and intensify this pain. Back braces can be used in certain instances to constrain such motion as part of an individual's therapy and have existed as both medical and retail products for a number of decades. Arguably, back brace designs have lacked the innovation expected in this time. Existing designs are often found to be heavy, overly rigid, indiscrete and largely uncomfortable. In order to facilitate the development of new designs of back braces capable of being optimised to constrain particular motions for specific therapies, a numerical and experimental design strategy has been devised, tested and proven for the first time. The strategy makes use of an experimental test rig in conjunction with finite element analysis simulations to investigate and quantify the effects of back braces on flexion, extension, lateral bending and torsional motions as experienced by the human trunk. This paper describes this strategy and demonstrates its effectiveness through the proposal and comparison of two novel back brace designs.
Assuntos
Braquetes , Coluna Vertebral/fisiologia , Simulação por Computador , Desenho Assistido por Computador , Análise de Elementos Finitos , Humanos , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Modelos Anatômicos , Movimento , Desenho de Prótese , Amplitude de Movimento Articular , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Torção MecânicaRESUMO
In this paper a new method of fabricating cylindrical resin microcantilevers using the Direct Digital Manufacturing (DDM) technique of Micro-stereolithography (MSL) is described. The method is rapid and commercially viable, allowing the fabrication of atomic force microscope (AFM) cantilevers which exhibit much larger spring constants than those currently commercial available. This allows for experimentation in a force regime orders of magnitude higher than currently possible using the AFM. This makes these cantilevers ideally suited for AFM-based depth sensing indentation. Due to their geometry, the assumptions used in the standard Euler-Bernoulli beam theory usually used to analyse AFM cantilevers may no longer be valid. Therefore approximate analytical solutions based on Timoshenko beam theory have been derived for the stiffness and resonant frequency of these cantilevers. Prototypes of the cantilevers have been fabricated and tested. Results show good agreement between experiment and theory.