Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586934

RESUMO

In many animals, ultraviolet (UV) vision guides navigation, foraging, and communication, but few studies have addressed the contribution of UV signals to colour vision, or measured UV discrimination thresholds using behavioural experiments. Here, we tested UV colour vision in an anemonefish (Amphiprion ocellaris) using a five-channel (RGB-V-UV) LED display. We first determined that the maximal sensitivity of the A. ocellaris UV cone was ∼386 nm using microspectrophotometry. Three additional cone spectral sensitivities had maxima at ∼497, 515 and ∼535 nm. We then behaviourally measured colour discrimination thresholds by training anemonefish to distinguish a coloured target pixel from grey distractor pixels of varying intensity. Thresholds were calculated for nine sets of colours with and without UV signals. Using a tetrachromatic vision model, we found that anemonefish were better (i.e. discrimination thresholds were lower) at discriminating colours when target pixels had higher UV chromatic contrast. These colours caused a greater stimulation of the UV cone relative to other cone types. These findings imply that a UV component of colour signals and cues improves their detectability, which likely increases the prominence of anemonefish body patterns for communication and the silhouette of zooplankton prey.


Assuntos
Visão de Cores , Perciformes , Animais , Cor , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção de Cores/fisiologia , Raios Ultravioleta
2.
Proc Biol Sci ; 290(2003): 20231160, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491958

RESUMO

Aposematic signals visually advertise underlying anti-predatory defences in many species. They should be detectable (e.g. contrasting against the background) and bold (e.g. using internal pattern contrast) to enhance predator recognition, learning and memorization. However, the signalling function of aposematic colour patterns may be distance-dependent: signals may be undetectable from a distance to reduce increased attacks from naïve predators but bold when viewed up close. Using quantitative colour pattern analysis, we quantified the chromatic and achromatic detectability and boldness of colour patterns in 13 nudibranch species with variable strength of chemical defences in terms of unpalatability and toxicity, approximating the visual perception of a triggerfish (Rhinecanthus aculeatus) across a predation sequence (detection to subjugation). When viewed from an ecologically relevant distance of 30 cm, there were no differences in detectability and boldness between well-defended and undefended species. However, when viewed at closer distances (less than 30 cm), well-defended species were more detectable and bolder than undefended species. As distance increased, detectability decreased more significantly than boldness for defended species. For undefended species, boldness and detectability remained comparatively consistent, regardless of viewing distance. We provide evidence for distance-dependent signalling in aposematic nudibranchs and highlight the importance of distinguishing signal detectability from boldness in studies of aposematism.


Assuntos
Evolução Biológica , Gastrópodes , Animais , Percepção Visual , Aprendizagem , Comportamento Predatório
3.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37363877

RESUMO

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Assuntos
Ecologia , Comportamento Predatório , Animais , Fenótipo
4.
Semin Cell Dev Biol ; 106: 31-42, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32593517

RESUMO

Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λmax) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe.


Assuntos
Opsinas/fisiologia , Visão Ocular/fisiologia , Animais , Recifes de Corais , Peixes
5.
J Exp Biol ; 225(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354306

RESUMO

Edge detection is important for object detection and recognition. However, we do not know whether edge statistics accurately predict the detection of prey by potential predators. This is crucial given the growing availability of image analysis software and their application across non-human visual systems. Here, we investigated whether Boundary Strength Analysis (BSA), Local Edge Intensity Analysis (LEIA) and the Gabor edge disruption ratio (GabRat) could predict the speed and success with which triggerfish (Rhinecanthus aculeatus) detected patterned circular stimuli against a noisy visual background, in both chromatic and achromatic presentations. We found various statistically significant correlations between edge statistics and detection speed depending on treatment and viewing distance; however, individual pattern statistics only explained up to 2% of the variation in detection time, and up to 6% when considering edge statistics simultaneously. We also found changes in fish response over time. While highlighting the importance of spatial acuity and relevant viewing distances in the study of visual signals, our results demonstrate the importance of considering explained variation when interpreting colour pattern statistics in behavioural experiments. We emphasize the need for statistical approaches suitable for investigating task-specific predictive relationships and ecological effects when considering animal behaviour. This is particularly important given the ever-increasing dimensionality and size of datasets in the field of visual ecology.

6.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258087

RESUMO

Animals use colour vision in a range of behaviours. Visual performance is limited by thresholds, which are set by noise in photoreceptors and subsequent neural processing. The receptor noise limited (RNL) model of colour discrimination is widely used for modelling colour vision and accounts well for experimental data from many species. In one of the most comprehensive tests yet of colour discrimination in a non-human species, we used Ishihara-style stimulus patterns to examine thresholds for 21 directions at five locations in colour space for the fish Rhinecanthus aculeatus. Thresholds matched RNL model predictions most closely for stimuli near the achromatic point, but exceeded predictions (indicating a decline in sensitivity) with distance from this point. Thresholds were also usually higher for saturation than for hue differences. These changes in colour threshold with colour space location and direction may give insight into photoreceptor non-linearities and post-receptoral mechanisms of colour vision in fish. Our results highlight the need for a cautious interpretation of the RNL model - especially for modelling colours that differ from one another in saturation (rather than hue), and for highly saturated colours distant from the achromatic point in colour space.


Assuntos
Visão de Cores , Tetraodontiformes , Animais , Cor , Percepção de Cores , Limiar Sensorial
7.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244167

RESUMO

Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.


Assuntos
Opsinas dos Cones , Tetraodontiformes , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Opsinas/genética , Opsinas/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
8.
J Anim Ecol ; 91(4): 831-844, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34839542

RESUMO

Defensive chemicals are used by plants and animals to reduce the risk of predation through different mechanisms, including toxins that cause injury and harm (weapons) and unpalatable or odiferous compounds that prevent attacks (deterrents). However, whether effective defences are both toxins and deterrents, or work in just one modality is often unclear. In this study, our primary aim was to determine whether defensive compounds stored by nudibranch molluscs acted as weapons (in terms of being toxic), deterrents (in terms of being distasteful) or both. Our secondary aim was to investigate the response of different taxa to these defensive compounds. To do this, we identified secondary metabolites in 30 species of nudibranch molluscs and investigated their deterrent properties using antifeedant assays with three taxa: rock pool shrimp, Palaemon serenus, and two fish species: triggerfish Rhinecanthus aculeatus and toadfish Tetractenos hamiltoni. We compared these results to toxicity assays using brine shrimp Artemia sp. and previously published toxicity data with a damselfish Chromis viridis. Overall, we found no clear relationship between palatability and toxicity, but instead classified defensive compounds into the following categories: Class I & II-highly unpalatable and highly toxic; Class I-weakly unpalatable and highly toxic; Class II-highly unpalatable but weakly toxic; WR (weak response)-weakly unpalatable and weakly toxic. We also found eight extracts from six species that did not display activity in any assays indicating they may have very limited chemical defensive mechanisms (NR, no response). We found that the different classes of secondary metabolites were similarly unpalatable to fish and shrimp, except extracts from Phyllidiidae nudibranchs (isonitriles) that were highly unpalatable to shrimp but weakly unpalatable to fish. Our results pave the way towards better understanding how animal chemical defences work against a variety of predators. We highlight the need to disentangle weapons and deterrents in future work on anti-predator defences to better understand the foraging decisions faced by predators, the resultant selection pressures imposed on prey and the evolution of different anti-predator strategies.


Assuntos
Decápodes , Gastrópodes , Animais , Artemia , Gastrópodes/fisiologia , Comportamento Predatório
9.
J Chem Ecol ; 47(10-11): 834-846, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33713252

RESUMO

Many organisms employ toxic compounds for protection against predators. To understand the effectiveness of such compounds, chemoecological studies often use brine shrimp (Artemia spp.) as a model organism instead of more ecologically relevant species. This is mostly because brine shrimp assays are simple and quick, but also due to the ethical implications associated with inducing harm to vertebrate predators in toxicity assays. In this study, we examined whether brine shrimp assays produce similar results to ichthyological toxicity assays with the aim of validating the use of brine shrimp as a preliminary screening tool. We extracted compounds from eight nudibranch molluscs including six species that we consider to signal their chemical defenses via warning coloration to visually hunting vertebrate predators. We tested the relative toxicity of these compounds against brine shrimp and a vertebrate potential predator, the blue-green damselfish (Chromis viridis). We found that extracts toxic to brine shrimp were also toxic to damselfish; however, extracts non-toxic to brine shrimp may still be toxic to damselfish. We also produced and tested mantle vs whole-body extracts for some nudibranch species, which exhibited similar toxicities in both assays except for the whole-body extract of Goniobranchus splendidus which was harmless to shrimp but toxic to fish, while the mantle extract was toxic to both. Overall, we argue that the brine shrimp assay can reasonably indicate the potential toxicity of a compound to fish, but additional experiments with more ecologically relevant predators are required if a no dose-response is observed against brine shrimp.


Assuntos
Artemia/efeitos dos fármacos , Produtos Biológicos/toxicidade , Gastrópodes/química , Testes de Toxicidade , Animais
10.
Mar Drugs ; 19(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940679

RESUMO

Extracts of the mantle and viscera of the Indo-Pacific nudibranchs Goniobranchus aureopurpureus and Goniobranchus sp. 1 afforded 11 new diterpenoids (1-11), all of which possess a tetracyclic spongian-16-one scaffold with extensive oxidation at C-6, C-7, C-11, C-12, C-13, and/or C-20. The structures and relative configuration were investigated by NMR experiments, while X-ray crystallography provided the absolute configuration of 1, including a 2'S configuration for the 2-methylbutanoate substituent located at C-7. Dissection of animal tissue revealed that the mantle and viscera tissues differed in their metabolite composition with diterpenes 1-11 present in the mantle tissue of the two nudibranch species.


Assuntos
Diterpenos , Gastrópodes , Animais , Organismos Aquáticos , Cristalografia por Raios X , Diterpenos/química , Gastrópodes/anatomia & histologia , New South Wales
11.
Proc Biol Sci ; 287(1935): 20201456, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933449

RESUMO

To be effective, animal colour signals must attract attention-and therefore need to be conspicuous. To understand the signal function, it is useful to evaluate their conspicuousness to relevant viewers under various environmental conditions, including when visual scenes are cluttered by objects of varying colour. A widely used metric of colour difference (ΔS) is based on the receptor noise limited (RNL) model, which was originally proposed to determine when two similar colours appear different from one another, termed the discrimination threshold (or just noticeable difference). Estimates of the perceptual distances between colours that exceed this threshold-termed 'suprathreshold' colour differences-often assume that a colour's conspicuousness scales linearly with colour distance, and that this scale is independent of the direction in colour space. Currently, there is little behavioural evidence to support these assumptions. This study evaluated the relationship between ΔS and conspicuousness in suprathreshold colours using an Ishihara-style test with a coral reef fish, Rhinecanthus aculeatus. As our measure of conspicuousness, we tested whether fish, when presented with two colourful targets, preferred to peck at the one with a greater ΔS - from the average distractor colour. We found the relationship between ΔS and conspicuousness followed-- a sigmoidal function, with high ΔS colours perceived as equally conspicuous. We found that the relationship between ΔS and conspicuousness varied across colour space (i.e. for different hues). The sigmoidal detectability curve was little affected by colour variation in the background or when colour distance was calculated using a model that does not incorporate receptor noise. These results suggest that the RNL model may provide accurate estimates for perceptual distance for small suprathreshold distance colours, even in complex viewing environments, but must be used with caution with perceptual distances exceeding- -10 ΔS.


Assuntos
Escamas de Animais/fisiologia , Peixes/fisiologia , Animais , Percepção de Cores , Recifes de Corais , Pigmentação , Tetraodontiformes/fisiologia
12.
J Exp Biol ; 223(Pt 21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32967998

RESUMO

Achromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal's visual system. Such thresholds are often estimated using the receptor noise limited model (RNL). However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested. Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. 'Dark' and 'bright' spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed lower thresholds for spots darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber-Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context dependent and should therefore be interpreted with caution.


Assuntos
Percepção de Cores , Tetraodontiformes , Animais , Sensibilidades de Contraste , Recifes de Corais , Estimulação Luminosa , Limiar Sensorial , Visão Ocular
13.
J Anim Ecol ; 89(7): 1735-1746, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227334

RESUMO

Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.


Assuntos
Ecossistema , Peixes , Aclimatação , Animais , Comportamento Predatório , Estações do Ano , Temperatura
14.
Proc Natl Acad Sci U S A ; 114(13): 3451-3456, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289233

RESUMO

Olfaction is considered a distance sense; hence, aquatic olfaction is thought to be mediated only by molecules dissolved in water. Here, we challenge this view by showing that shrimp and fish can recognize the presence of hydrophobic olfactory cues by a "tactile" form of chemoreception. We found that odiferous furanosesquiterpenes protect both the Mediterranean octocoral Maasella edwardsi and its specialist predator, the nudibranch gastropod Tritonia striata, from potential predators. Food treated with the terpenes elicited avoidance responses in the cooccurring shrimp Palaemon elegans Rejection was also induced in the shrimp by the memory recall of postingestive aversive effects (vomiting), evoked by repeatedly touching the food with chemosensory mouthparts. Consistent with their emetic properties once ingested, the compounds were highly toxic to brine shrimp. Further experiments on the zebrafish showed that this vertebrate aquatic model also avoids food treated with one of the terpenes, after having experienced gastrointestinal malaise. The fish refused the food after repeatedly touching it with their mouths. The compounds studied thus act simultaneously as (i) toxins, (ii) avoidance-learning inducers, and (iii) aposematic odorant cues. Although they produce a characteristic smell when exposed to air, the compounds are detected by direct contact with the emitter in aquatic environments and are perceived at high doses that are not compatible with their transport in water. The mouthparts of both the shrimp and the fish have thus been shown to act as "aquatic noses," supporting a substantial revision of the current definition of the chemical senses based upon spatial criteria.


Assuntos
Organismos Aquáticos/fisiologia , Gastrópodes/fisiologia , Olfato , Compostos Orgânicos Voláteis/metabolismo , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Odorantes/análise , Metabolismo Secundário , Compostos Orgânicos Voláteis/química
15.
Mol Ecol ; 28(12): 3025-3041, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977927

RESUMO

Animal visual systems adapt to environmental light on various timescales. In scotopic conditions, evolutionary time-scale adaptations include spectral tuning to a narrower light spectrum, loss (or inactivation) of visual genes, and pure-rod or rod-dominated retinas. Some fishes inhabiting shallow coral reefs may show activity during the day and at night. It is unclear whether these fishes show adaptations typical of exclusively nocturnal or deep-sea fishes, or of diurnally active shallow-water species. Here, we investigated visual pigment diversity in cardinalfishes (Apogonidae). Most cardinalfishes are nocturnal foragers, yet they aggregate in multispecies groups in and around coral heads during the day, engaging in social and predator avoidance behaviours. We sequenced retinal transcriptomes of 28 species found on the Great Barrier Reef, assessed the diversity of expressed opsin genes and predicted the spectral sensitivities of resulting photopigments using sequence information. Predictions were combined with microspectrophotometry (MSP) measurements in seven cardinalfish species. Retinal opsin expression was rod opsin (RH1) dominated (>87%), suggesting the importance of scotopic vision. However, all species retained expression of multiple cone opsins also, presumably for colour vision. We found five distinct quantitative expression patterns among cardinalfishes, ranging from short-wavelength-shifted to long-wavelength-shifted. These results indicate that cardinalfishes are both well adapted to dim-light conditions and have retained a sophisticated colour vision sense. Other reef fish families also show both nocturnal and diurnal activity while most are strictly one or the other. It will be interesting to compare these behavioural differences across different phylogenetic groups using the criteria and methods developed here.


Assuntos
Evolução Biológica , Opsinas dos Cones/genética , Perciformes/genética , Opsinas de Bastonetes/genética , Aclimatação/genética , Animais , Visão de Cores/genética , Visão de Cores/fisiologia , Recifes de Corais , Expressão Gênica/genética , Luz , Perciformes/fisiologia , Filogenia
16.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399486

RESUMO

Color vision is essential for animals as it allows them to detect, recognize and discriminate between colored objects. Studies analyzing color vision require an integrative approach, combining behavioral experiments, physiological models and quantitative analyses of photoreceptor stimulation. Here, we demonstrate, for the first time, the limits of chromatic discrimination in Metriaclima benetos, a rock-dwelling cichlid from Lake Malawi, using behavioral experiments and visual modeling. Fish were trained to discriminate between colored stimuli. Color discrimination thresholds were quantified by testing fish chromatic discrimination between the rewarded stimulus and distracter stimuli that varied in chromatic distance (ΔS). This was done under fluorescent lights alone and with additional violet lights. Our results provide two main outcomes. First, cichlid color discrimination thresholds correspond with predictions from the receptor noise limited (RNL) model but only if we assume a Weber fraction higher than the typical value of 5%. Second, cichlids may exhibit limited color constancy under certain lighting conditions as most individuals failed to discriminate colors when violet light was added. We further used the color discrimination thresholds obtained from these experiments to model color discrimination of actual fish colors and backgrounds under natural lighting for Lake Malawi. We found that, for M. benetos, blue is most chromatically contrasting against yellows and space-light, which might be important for discriminating male nuptial colorations and detecting males against the background. This study highlights the importance of lab-based behavioral experiments in understanding color vision and in parameterizing the assumptions of the RNL vision model for different species.


Assuntos
Ciclídeos/fisiologia , Percepção de Cores/fisiologia , Visão de Cores , Animais , Lagos , Estimulação Luminosa
17.
J Exp Biol ; 222(Pt 1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606793

RESUMO

Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ΔS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Limiar Sensorial/fisiologia , Tetraodontiformes/fisiologia , Animais , Modelos Biológicos , Células Fotorreceptoras Retinianas Cones
18.
J Fish Biol ; 95(1): 5-38, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30357835

RESUMO

Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"


Assuntos
Visão de Cores , Cor , Recifes de Corais , Peixes/fisiologia , Comunicação Animal , Animais , Mimetismo Biológico , Mudança Climática , Ecossistema
19.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875302

RESUMO

Mimicry of warning signals is common, and can be mutualistic when mimetic species harbour equal levels of defence (Müllerian), or parasitic when mimics are undefended but still gain protection from their resemblance to the model (Batesian). However, whether chemically defended mimics should be similar in terms of toxicity (i.e. causing damage to the consumer) and/or unpalatability (i.e. distasteful to consumer) is unclear and in many studies remains undifferentiated. In this study, we investigated the evolution of visual signals and chemical defences in a putative mimicry ring of nudibranch molluscs. First, we demonstrated that the appearance of a group of red spotted nudibranchs molluscs was similar from the perspective of potential fish predators using visual modelling and pattern analysis. Second, using phylogenetic reconstruction, we demonstrated that this colour pattern has evolved multiple times in distantly related individuals. Third, we showed that these nudibranchs contained different chemical profiles used for defensive purposes. Finally, we demonstrated that although levels of distastefulness towards Palaemon shrimp remained relatively constant between species, toxicity levels towards brine shrimp varied significantly. We highlight the need to disentangle toxicity and taste when considering chemical defences in aposematic and mimetic species, and discuss the implications for aposematic and mimicry signal evolution.


Assuntos
Evolução Biológica , Mimetismo Biológico , Cadeia Alimentar , Gastrópodes/fisiologia , Palaemonidae/fisiologia , Tetraodontiformes/fisiologia , Animais , Austrália , Cor , Filogenia , Paladar
20.
J Exp Biol ; 221(Pt 22)2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30158132

RESUMO

Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment, according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on genes encoding opsin, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales, including short time frames due to seasonal variation, or through longer-term evolutionary tuning. There is also evidence for 'on-the-fly' adaptations in adult fish in response to rapidly changing environmental conditions; however, results are contradictory. Here, we investigated the ability of three reef fish species that belong to two ecologically distinct families, yellow-striped cardinalfish (Ostorhinchus cyanosoma), Ambon damselfish (Pomacentrus amboinensis) and lemon damselfish (Pomacentrus moluccensis), to alter opsin gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that changes in opsin expression in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.


Assuntos
Visão de Cores/fisiologia , Proteínas de Peixes/genética , Expressão Gênica/fisiologia , Luz , Opsinas/genética , Perciformes/fisiologia , Animais , Visão de Cores/genética , Recifes de Corais , Ecossistema , Proteínas de Peixes/metabolismo , Opsinas/metabolismo , Perciformes/genética , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa