Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(3): e28637, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36892175

RESUMO

Increasing evidence suggests that natural antisense transcriptional lncRNAs regulate their adjacent coding genes to mediate diverse aspects of biology. Bioinformatics analysis of the previously identified antiviral gene ZNFX1 revealed neighboring lncRNA ZFAS1 transcribed on the opposite strand from ZNFX1. Whether ZFAS1 exerts antiviral function via regulating the dsRNA sensor ZNFX1 is unknown. Here we found that ZFAS1 was upregulated by RNA and DNA viruses and type I IFNs (IFN-I) dependent on Jak-STAT signaling, similar to the transcription regulation of ZNFX1. Knockdown of endogenous ZFAS1 partially facilitated viral infection, while ZFAS1 overexpression showed opposite effects. In addition, mice were more resistant to VSV infection with the delivery of human ZFAS1. We further observed that ZFAS1 knockdown significantly inhibited IFNB1 expression and IFR3 dimerization, whereas ZFAS1 overexpression positively regulated antiviral innate immune pathways. Mechanistically, ZFAS1 positively regulated ZNFX1 expression and antiviral function by enhancing the protein stability of ZNFX1, thereby establishing a positive feedback loop to enhance antiviral immune activation status. In short, ZFAS1 is a positive regulator of antiviral innate immune response via regulating its neighbor gene ZNFX1, adding new mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Antivirais , MicroRNAs/genética , Antígenos de Neoplasias
2.
Acta Pharmacol Sin ; 44(6): 1238-1251, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36522512

RESUMO

Recent evidence shows that targeting NLRP3 inflammasome activation is an important means to treat inflammasome-driven diseases. Scoparone, a natural compound isolated from the Chinese herb Artemisia capillaris Thunb, has anti-inflammatory activity. In this study we investigated the effect of scoparone on NLRP3 inflammasome activation in inflammatory diseases. In LPS-primed, ATP or nigericin-stimulated mouse macrophage J774A.1 cells and bone marrow-derived macrophages (BMDMs), pretreatment with scoparone (50 µM) markedly restrained canonical and noncanonical NLRP3 inflammasome activation, evidenced by suppressed caspase-1 cleavage, GSDMD-mediated pyroptosis, mature IL-1ß secretion and the formation of ASC specks. We then conducted a transcriptome analysis in scoparone-pretreated BMDMs, and found that the differentially expressed genes were significantly enriched in mitochondrial reactive oxygen species (ROS) metabolic process, mitochondrial translation and assembly process, as well as in inflammatory response. We demonstrated in J774A.1 cells and BMDMs that scoparone promoted mitophagy, a well-characterized mechanism to control mitochondrial quality and reduce ROS production and subsequent NLRP3 inflammasome activation. Mitophagy blockade by 3-methyladenine (3-MA, 5 mM) reversed the protective effects of scoparone on mitochondrial damage and inflammation in the murine macrophages. Moreover, administration of scoparone (50 mg/kg) exerted significant preventive effects via inhibition of NLRP3 activation in mouse models of bacterial enteritis and septic shock. Collectively, scoparone displays potent anti-inflammatory effects via blocking NLRP3 inflammasome activation through enhancing mitophagy, highlighting a potential action mechanism in treating inflammasome-related diseases for further clinical investigation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
3.
Acta Pharmacol Sin ; 44(11): 2253-2264, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37311796

RESUMO

Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Interferon Tipo I , Infecções por Orthomyxoviridae , Camundongos , Animais , Capsaicina/farmacologia , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas de Transporte , Replicação Viral
4.
Acta Pharm Sin B ; 14(8): 3513-3527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220861

RESUMO

Bile acids (BAs) are natural metabolites in mammals and have the potential to function as drugs against viral infection. However, the limited understanding of chenodeoxycholic acid (CDCA) receptors and downstream signaling, along with its lower suppression efficiency in inhibiting virus infection limits its clinical application. In this study, we demonstrate that farnesoid X receptor (FXR), the receptor of CDCA, negatively regulates interferon signaling, thereby contributing to the reduced effectiveness of CDCA against virus replication. FXR deficiency or pharmacological inhibition enhances interferon signaling activation to suppress virus infection. Mechanistically, FXR impairs the DNA binding and transcriptional abilities of activated interferon regulatory factor 3 (IRF3) through interaction. Reduced IRF3 transcriptional activity by FXR-IRF3 interaction significantly undermines the expression of Interferon Beta 1 (IFNB1) and the antiviral response of cells, especially upon the CDCA treatment. In FXR-deficient cells, or when combined with Z-guggulsterone (GUGG) treatment, CDCA exhibits a more potent ability to restrict virus infection. Thus, these findings suggest that FXR serves as a limiting factor for CDCA in inhibiting virus replication, which can be attributed to the "signaling-brake" roles of FXR in interferon signaling. Targeting FXR inhibition represents a promising pharmaceutical strategy for the clinical application of BAs metabolites as antiviral drugs.

5.
J Agric Food Chem ; 72(37): 20432-20443, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39253862

RESUMO

For background, Hirsutella sinensis, the only anamorphic fungus considered an effective substitute for Cordyceps sinensis, possesses immunoregulatory properties. However, the specific mechanism underlying the immunoregulatory function of Hirsutella sinensis remains unclear. The purpose is to investigate the therapeutic effects of Hirsutella sinensis alcohol extract (HSAE) on immune dysregulation and elucidate the underlying mechanisms involved. For methods, we established inflammatory and immunosuppression models in vitro and in vivo to evaluate the bidirectional immunoregulatory function of HSAE via qRT-PCR and immunoblotting. We also studied its potential mechanism via RNA sequencing and transcriptional analysis. We further established M1 and M2 cell models to explore the effect of HSAE on M1/M2 polarization using qRT-PCR, immunoblotting, and flow cytometry. For results, our data demonstrated enhanced proliferation, phagocytosis, and antipathogenic activities of macrophages. Treatment with HSAE led to increases in the proportions of CD3+ and CD4+ immune cells in cyclophosphamide-induced immunosuppressed mice. Additionally, HSAE reduced the lipopolysaccharide (LPS)-induced expression of Il1b, Il6, Ifnb1, and Cxcl10 by inhibiting the activation of the NF-κB and MAPK pathways in vitro and improved mouse survival by reducing the proportion of M1/M2 macrophages in septic mice. Finally, we found that HSAE inhibited M1 polarization by decreasing the expression of iNOS and CD86 and promoted M2 polarization by increasing the expression of ARG1 and CD206. For conclusions, our study provides evidence that HSAE has the potential to enhance immune responses and suppress excessive inflammation. These effects were realized by modulating macrophage polarization, providing novel insights into the fundamental mechanism underlying the bidirectional immunomodulatory effect of HSAE.


Assuntos
Macrófagos , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Humanos , Células RAW 264.7 , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Fagocitose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química
6.
Phytomedicine ; 114: 154786, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002973

RESUMO

BACKGROUND: The transcription factor NRF2 is a master redox switch that regulates the cellular antioxidant response. However, recent advances have revealed new roles for NRF2, including the regulation of antiviral responses to various viruses, suggesting that pharmacological NRF2-activating agents may be a promising therapeutic drug for viral diseases. Isoliquiritigenin (ISL), a chalcone isolated from liquorice (Glycyrrhizae Radix) root, is reported to be a natural NRF2 agonist and has has antiviral activities against HCV (hepatitis C virus) and IAV (influenza A virus). However, the spectrum of antiviral activity and associated mechanism of ISL against other viruses are not well defined. PURPOSE: This study investigated the antiviral activity and underlying mechanism of ISL against vesicular stomatitis virus (VSV), influenza A virus (H1N1), encephalomyocarditis virus (EMCV), herpes simplex virus type 1 (HSV-1). METHODS: We evaluated the antiviral activity of ISL against VSV, H1N1, EMCV, and HSV-1 using flow cytometry and qRT-PCR analysis. RNA sequencing and bioinformatic analysis were performed to investigate the potential antiviral mechanism of ISL. NRF2 knockout cells were used to investigate whether NRF2 is required for the antiviral activity of ISL. The anti-apoptosis and anti-inflammatory activities of ISL were further measured by counting cell death ratio and assessing proinflammatory cytokines expression in virus-infected cells, respectively. In addition, we evaluated the antiviral effect of ISL in vivo by measuring the survival rate, body weights, histological analysis, viral load, and cytokine expression in VSV-infected mouse model. RESULTS: Our data demonstrated that ISL effectively suppressed VSV, H1N1, HSV-1, and EMCV replication in vitro. The antiviral activity of ISL could be partially impaired in NRF2-deficient cells. Virus-induced cell death and proinflammatory cytokines were repressed by ISL. Finally, we showed that ISL treatment protected mice against VSV infection by reducing viral titers and suppressing the expression of inflammatory cytokines in vivo. CONCLUSION: These findings suggest that ISL has antiviral and anti-inflammatory effects in virus infections, which are associated with its ability to activate NRF2 signaling, thus indicating that ISL has the potential to serve as an NRF2 agonist in the treatment of viral diseases.


Assuntos
Chalconas , Herpesvirus Humano 1 , Vírus da Influenza A Subtipo H1N1 , Viroses , Vírus , Camundongos , Animais , Chalconas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Vírus/metabolismo , Antivirais/farmacologia , Inflamação , Citocinas , Anti-Inflamatórios/farmacologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa