Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Ecotoxicol Environ Saf ; 241: 113723, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679725

RESUMO

Constitutional delay of growth and puberty (CDGP) refers to the late onset of puberty. CDGP is associated with poor psychosocial outcomes and elevated risk of cardiovascular and osteoporotic diseases, especially in women. The environmental factors that contribute to CDGP are poorly understood. Here, we investigated the effects of chronic circadian disturbance (CCD) during the fetal stage on the pubertal development of female mice. Compared to non-stressed female (NS-F) mice that were not exposed to CCD in utero, adolescent CCD female (CCD-F) mice exhibited phenotypes that were consistent with CDGP, including lower body weight, reduced levels of circulating gonadal hormones, decreased expression of gonadal hormones and steroid synthesis-related enzymes in the ovary and hypothalamus, irregular estrus cycles, and tardive vaginal introitus initial opening (VO) days (equivalent to the menarche). Phenotypic differences in the above-noted parameters were not observed in CCD-F mice once they had reached adulthood. The expression of genes involved in fatty acid metabolism was perturbed in the ovary and hypothalamus of CCD-F mice. In addition, the ovaries of these animals exhibited altered diurnal expression profiles of circadian clock genes. Together, our findings not only suggest that CCD during fetal development may result in delayed puberty in female mice, they also offer insights on potential mechanisms that underlie CDGP.


Assuntos
Puberdade Tardia , Animais , Ritmo Circadiano , Feminino , Humanos , Camundongos , Puberdade
2.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142478

RESUMO

Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day-night cycle. This internal timekeeping mechanism is built on autoregulatory transcription-translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin-proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Proteínas CLOCK , Relógios Circadianos/genética , Ritmo Circadiano/genética , Drosophila/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas
3.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008655

RESUMO

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Neurônios/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano , Camundongos , Neurônios/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/fisiologia
4.
FASEB J ; 33(11): 12240-12252, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431066

RESUMO

It is recognized that stress can induce cardiac dysfunction, but the underlying mechanisms are not well understood. The present study aimed to test the hypothesis that chronic negative stress leads to alterations in DNA methylation of certain cardiac genes, which in turn contribute to pathologic remodeling of the heart. We found that mice that were exposed to chronic restraint stress (CRS) for 4 wk exhibited cardiac remodeling toward heart failure, as characterized by ventricular chamber dilatation, wall thinning, and decreased contractility. CRS also induced cardiac arrhythmias, including intermittent sinus tachycardia and bradycardia, frequent premature ventricular contraction, and sporadic atrioventricular conduction block. Circulating levels of stress hormones were elevated, and the cardiac expression of tyrosine hydroxylase, a marker of sympathetic innervation, was increased in CRS mice. Using reduced representation bisulfite sequencing, we found that although CRS did not lead to global changes in DNA methylation in the murine heart, it nevertheless altered methylation at specific genes that are associated with the dilated cardiomyopathy (DCM) (e.g., desmin) and adrenergic signaling of cardiomyocytes (ASPC) (e.g., adrenergic receptor-α1) pathways. We conclude that CRS induces cardiac remodeling and arrhythmias, potentially through altered methylation of myocardial genes associated with the DCM and ASPC pathways.-Zhang, P., Li, T., Liu, Y.-Q., Zhang, H., Xue, S.-M., Li, G., Cheng, H.-Y.M., Cao, J.-M. Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice.


Assuntos
Arritmias Cardíacas/etiologia , Metilação de DNA , Estresse Psicológico/complicações , Remodelação Ventricular/fisiologia , Animais , Doença Crônica , Coração/inervação , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos alfa 1/fisiologia
5.
Proc Natl Acad Sci U S A ; 114(5): 1207-1212, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096421

RESUMO

Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.


Assuntos
Sistema Límbico/metabolismo , Ratos-Toupeira/fisiologia , Neuropeptídeos/fisiologia , Maturidade Sexual/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Injeções Intraventriculares , Kisspeptinas/metabolismo , Masculino , Neuropeptídeos/farmacologia , Ovário/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Progesterona/biossíntese , Progesterona/sangue , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/efeitos dos fármacos , Isolamento Social , Testículo/metabolismo , Testosterona/biossíntese , Testosterona/sangue
6.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086044

RESUMO

The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.


Assuntos
Ritmo Circadiano/fisiologia , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila , Humanos , Camundongos , Núcleo Supraquiasmático/metabolismo
7.
Cell Mol Life Sci ; 74(6): 1035-1059, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27689221

RESUMO

Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.


Assuntos
Relógios Circadianos/genética , Drosophila melanogaster/genética , Animais , Regulação da Expressão Gênica , Camundongos , Modelos Genéticos , Biossíntese de Proteínas/genética , Transcrição Gênica
8.
Nature ; 480(7376): 209-14, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22080954

RESUMO

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Folículo Piloso/citologia , Células-Tronco/citologia , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adesão Celular/genética , Ciclo Celular/genética , Células Cultivadas , Senescência Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Sinais (Psicologia) , Feminino , Regulação da Expressão Gênica/genética , Homeostase/genética , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética
9.
PLoS Genet ; 10(10): e1004695, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330117

RESUMO

The suprachiasmatic nucleus (SCN) acts as the central clock to coordinate circadian oscillations in mammalian behavior, physiology and gene expression. Despite our knowledge of the circadian transcriptome of the SCN, how it impacts genome-wide protein expression is not well understood. Here, we interrogated the murine SCN proteome across the circadian cycle using SILAC-based quantitative mass spectrometry. Of the 2112 proteins that were accurately quantified, 20% (421 proteins) displayed a time-of-day-dependent expression profile. Within this time-of-day proteome, 11% (48 proteins) were further defined as circadian based on a sinusoidal expression pattern with a ∼24 h period. Nine circadianly expressed proteins exhibited 24 h rhythms at the transcript level, with an average time lag that exceeded 8 h. A substantial proportion of the time-of-day proteome exhibited abrupt fluctuations at the anticipated light-to-dark and dark-to-light transitions, and was enriched for proteins involved in several key biological pathways, most notably, mitochondrial oxidative phosphorylation. Additionally, predicted targets of miR-133ab were enriched in specific hierarchical clusters and were inversely correlated with miR133ab expression in the SCN. These insights into the proteomic landscape of the SCN will facilitate a more integrative understanding of cellular control within the SCN clock.


Assuntos
Ritmo Circadiano/fisiologia , Proteoma/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Regulação da Expressão Gênica , Luz , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Mapas de Interação de Proteínas , Proteoma/análise , Proteômica/instrumentação , Proteômica/métodos , Transcriptoma
10.
J Neurosci ; 35(16): 6444-51, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904795

RESUMO

Polyglutamine (polyQ) expansion of the androgen receptor (AR) causes Kennedy's disease/spinobulbar muscular atrophy (KD/SBMA) through poorly defined cellular mechanisms. Although KD/SBMA has been thought of as a motor neuron disease, recent evidence indicates a key role for skeletal muscle. To resolve which early aspects of the disease can be caused by neurogenic or myogenic mechanisms, we made use of the tet-On and Cre-loxP genetic systems to selectively and acutely express polyQ AR in either motor neurons (NeuroAR) or myocytes (MyoAR) of transgenic mice. After 4 weeks of transgene induction in adulthood, deficits in gross motor function were seen in NeuroAR mice, but not MyoAR mice. Conversely, reduced size of fast glycolytic fibers and alterations in expression of candidate genes were observed only in MyoAR mice. Both NeuroAR and MyoAR mice exhibited reduced oxidative capacity in skeletal muscles, as well as a shift in fast fibers from oxidative to glycolytic. Markers of oxidative stress were increased in the muscle of NeuroAR mice and were reduced in motor neurons of both NeuroAR and MyoAR mice. Despite secondary pathology in skeletal muscle and behavioral deficits, no pathological signs were observed in motor neurons of NeuroAR mice, possibly due to relatively low levels of polyQ AR expression. These results indicate that polyQ AR in motor neurons can produce secondary pathology in muscle. Results also support both neurogenic and myogenic contributions of polyQ AR to several acute aspects of pathology and provide further evidence for disordered cellular respiration in KD/SBMA skeletal muscle.


Assuntos
Modelos Animais de Doenças , Neurônios Motores/patologia , Células Musculares/patologia , Transtornos Musculares Atróficos/patologia , Animais , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Destreza Motora , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/genética , Estresse Oxidativo/genética , Receptores Androgênicos/genética
11.
Fa Yi Xue Za Zhi ; 31(2): 102-4, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26245085

RESUMO

OBJECTIVE: To observe the characteristics of vertical cast-off bloodstain pattern by different hitting-tools. METHODS: The regular hitting tools, a kitchen knife, a dirk, a plane set-hammer and an iron pipe, were selected. At a distance of 30 cm away from the wall, the hitting tool with 5 mL fresh chicken blood made the cast-off bloodstain from top to bottom. Then the holistic distribution characteristics (length, width and density) of cast-off bloodstain and morphology characteristics (length, width and contact angle) of first single cast-off bloodstain were analyzed. RESULTS: The distribution length of cast-off bloodstain formed by dirk was minimum (P < 0.05). The distribution width of cast-off bloodstain formed by kitchen knife was minimum (P < 0.05). Except the pair of kitchen knife and plane set-hammer, the distribution density between each two tools had statistical differences (P < 0.05). The length of first single cast-off bloodstain formed by plane set-hammer was longest compared (P < 0.05). The width of first single cast-off bloodstain had statistical differences between kitchen knife and plane set-hammer, and between dirk and plane set-hammer (P < 0.05). CONCLUSION: The type of hitting tool could be inferred by the specific characteristics of cast-off bloodstain pattern formed by every specific type of hitting tool in crime scene.


Assuntos
Manchas de Sangue , Simulação por Computador , Balística Forense/métodos , Crime , Medicina Legal/métodos , Humanos
12.
World J Gastrointest Oncol ; 16(4): 1532-1546, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660671

RESUMO

BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare hereditary neoplastic disorder mainly associated with serine/threonine kinase 11 (STK11/LKB1) gene mutations. Preimplantation genetic testing can protect a patient's offspring from mutated genes; however, some variations in this gene have been interpreted as variants of uncertain significance (VUS), which complicate reproductive decision-making in genetic counseling. AIM: To identify the pathogenicity of two missense variants and provide clinical guidance. METHODS: Whole exome gene sequencing and Sanger sequencing were performed on the peripheral blood of patients with PJS treated at the Reproductive and Genetic Hospital of Citic-Xiangya. Software was employed to predict the protein structure, conservation, and pathogenicity of the two missense variation sites in patients with PJS. Additionally, plasmids were constructed and transfected into HeLa cells to observe cell growth. The differences in signal pathway expression between the variant group and the wild-type group were compared using western blot and immunohistochemistry. Statistical analysis was performed using one-way analysis of variance. P < 0.05 was considered statistically significant. RESULTS: We identified two missense STK11 gene VUS [c.889A>G (p.Arg297Gly) and c.733C>T (p.Leu245Phe)] in 9 unrelated PJS families who were seeking reproductive assistance. The two missense VUS were located in the catalytic domain of serine/threonine kinase, which is a key structure of the liver kinase B1 (LKB1) protein. In vitro experiments showed that the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and LKB1 at Ser428 were significantly higher in transfected variation-type cells than in wild-type cells. In addition, the two missense STK11 variants promoted the proliferation of HeLa cells. Subsequent immunohistochemical analysis showed that phosphorylated-AMPK (Thr172) expression was significantly lower in gastric, colonic, and uterine polyps from PJS patients with missense variations than in non-PJS patients. Our findings indicate that these two missense STK11 variants are likely pathogenic and inactivate the STK11 gene, causing it to lose its function of regulating downstream phosphorylated-AMPK (Thr172), which may lead to the development of PJS. The identification of the pathogenic mutations in these two clinically characterized PJS patients has been helpful in guiding them toward the most appropriate mode of pregnancy assistance. CONCLUSION: These two missense variants can be interpreted as likely pathogenic variants that mediated the onset of PJS in the two patients. These findings not only offer insights for clinical decision-making, but also serve as a foundation for further research and reanalysis of missense VUS in rare diseases.

13.
Stem Cells Transl Med ; 13(6): 546-558, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457239

RESUMO

Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.


Assuntos
Rastreamento de Células , Ferritinas , Imageamento por Ressonância Magnética , Células-Tronco Neurais , Ratos Nus , Medula Espinal , Animais , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Rastreamento de Células/métodos , Humanos , Ratos , Ferritinas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/diagnóstico por imagem , Transplante de Células-Tronco/métodos , Diferenciação Celular , Traumatismos da Medula Espinal/terapia
14.
iScience ; 27(2): 109008, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38352228

RESUMO

Disruption of circadian rhythms during fetal development may predispose mice to developing heart disease later in life. Here, we report that male, but not female, mice that had experienced chronic circadian disturbance (CCD) in utero were more susceptible to pathological cardiac remodeling compared with mice that had developed under normal intrauterine conditions. CCD-treated males showed ventricular chamber dilatation, enhanced myocardial fibrosis, decreased contractility, higher rates of induced tachyarrhythmia, and elevated expression of biomarkers for heart failure and myocardial remodeling. In utero CCD exposure also triggered sex-dependent changes in cardiac gene expression, including upregulation of the secretoglobin gene, Scgb1a1, in males. Importantly, cardiac overexpression of Scgb1a1 was sufficient to induce myocardial hypertrophy in otherwise naive male mice. Our findings reveal that in utero CCD exposure predisposes male mice to pathological remodeling of the heart later in life, likely as a consequence of SCGB1A1 upregulation.

15.
J Neurosci ; 32(14): 4867-77, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492043

RESUMO

Activation of the MAPK/ERK signaling cascade in the suprachiasmatic nucleus (SCN) is a key event that couples light to circadian clock entrainment. However, we do not fully understand the mechanisms that shape the properties of MAPK/ERK signaling in the SCN, and how these mechanisms may influence overt circadian rhythms. Here we show that Raf kinase inhibitor protein (RKIP) controls the kinetics of light-induced MAPK/ERK activity in the SCN and photic entrainment of behavioral rhythms. Light triggers robust phosphorylation of RKIP in the murine SCN and dissociation of RKIP and c-Raf. Overexpression of a nonphosphorylatable form of RKIP in the SCN of transgenic mice blocks light-induced ERK1/2 activation in the SCN and severely dampens light-induced phase delays in behavioral rhythms. Conversely, in RKIP knock-out (RKIP(-/-)) mice, light-induced ERK1/2 activity in the SCN is prolonged in the early and late subjective night, resulting in augmentation of the phase-delaying and -advancing effects of light. Reentrainment to an advancing light cycle was also accelerated in RKIP(-/-) mice. In relation to the molecular clockwork, genetic deletion of RKIP potentiated light-evoked PER1 and PER2 protein expression in the SCN in the early night. Additionally, RKIP(-/-) mice displayed enhanced transcriptional activation of mPeriod1 and the immediate early gene c-Fos in the SCN in response to a phase-delaying light pulse. Collectively, our data reveal an important role of RKIP in the regulation of MAPK/ERK signaling in the SCN and photic entrainment of the SCN clock.


Assuntos
Relógios Circadianos/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Estimulação Luminosa/métodos , Núcleo Supraquiasmático/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Núcleo Supraquiasmático/enzimologia
16.
Hum Mol Genet ; 20(4): 731-51, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21118894

RESUMO

Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Ritmo Circadiano/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Biologia Computacional , Proteínas de Ligação a DNA , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/metabolismo , Histona Desmetilases com o Domínio Jumonji , Luz , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estabilidade de RNA , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Mol Cell Proteomics ; 10(11): M110.007252, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21859948

RESUMO

In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 µg and 200 µg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.


Assuntos
Automação Laboratorial , Relógios Circadianos , Luz , Proteoma/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Bovinos , Cromatografia Líquida/normas , Expressão Gênica/efeitos da radiação , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/isolamento & purificação , Soroalbumina Bovina/normas , Núcleo Supraquiasmático/efeitos da radiação , Espectrometria de Massas em Tandem/normas
18.
Stem Cell Res Ther ; 14(1): 330, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964388

RESUMO

BACKGROUND: A non-invasive imaging technology that can monitor cell viability, retention, distribution, and interaction with host tissue after transplantation is needed for optimizing and translating stem cell-based therapies. Current cell imaging approaches are limited in sensitivity or specificity, or both, for in vivo cell tracking. The objective of this study was to apply a novel ferritin-based magnetic resonance imaging (MRI) platform to longitudinal tracking of human embryonic stem cells (hESCs) in vivo. METHODS: Human embryonic stem cells (hESCs) were genetically modified to stably overexpress ferritin using the CRISPR-Cas9 system. Cellular toxicity associated with ferritin overexpression and manganese (Mn) supplementation were assessed based on cell viability, proliferation, and metabolic activity. Ferritin-overexpressing hESCs were characterized based on stem cell pluripotency and cardiac-lineage differentiation capability. Cells were supplemented with Mn and imaged in vitro as cell pellets on a preclinical 3 T MR scanner. T1-weighted images and T1 relaxation times were analyzed to assess contrast. For in vivo study, three million cells were injected into the leg muscle of non-obese diabetic severe combined immunodeficiency (NOD SCID) mice. Mn was administrated subcutaneously. T1-weighted sequences and T1 mapping were used to image the animals for longitudinal in vivo cell tracking. Cell survival, proliferation, and teratoma formation were non-invasively monitored by MRI. Histological analysis was used to validate MRI results. RESULTS: Ferritin-overexpressing hESCs labeled with 0.1 mM MnCl2 provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, proliferation, pluripotency, and differentiation into cardiomyocytes. Transplanted hESCs displayed significant bright contrast on MRI 24 h after Mn administration, with contrast persisting for 5 days. Bright contrast was recalled at 4-6 weeks with early teratoma outgrowth. CONCLUSIONS: The bright-ferritin platform provides the first demonstration of longitudinal cell tracking with signal recall, opening a window on the massive cell death that hESCs undergo in the weeks following transplantation before the surviving cell fraction proliferates to form teratomas.


Assuntos
Células-Tronco Embrionárias Humanas , Teratoma , Camundongos , Animais , Humanos , Células-Tronco Embrionárias Humanas/patologia , Ferritinas/genética , Camundongos SCID , Imageamento por Ressonância Magnética/métodos , Células-Tronco Embrionárias
19.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301669

RESUMO

Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.


Assuntos
Cobre , Doenças Mitocondriais , Camundongos , Animais , Cobre/metabolismo , alfa-Fetoproteínas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Terapia de Imunossupressão
20.
PLoS One ; 17(9): e0273098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107951

RESUMO

Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.


Assuntos
Ratos-Toupeira , Neurogênese , Animais , Bromodesoxiuridina , Longevidade/fisiologia , Ratos-Toupeira/fisiologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa