Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(7): 7761-7777, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380895

RESUMO

In this paper, a multi-beam scanning technique is proposed to optimize the microvascular images of human skin obtained with Doppler effect based methods and speckle variance processing. Flow phantom experiments were performed to investigate the suitability for combining multi-beam data to achieve enhanced microvascular imaging. To our surprise, the highly variable spot sizes (ranging from 13 to 77 µm) encountered in high numerical aperture multi-beam OCT system imaging the same target provided reasonably uniform Doppler variance and speckle variance responses as functions of flow velocity, which formed the basis for combining them to obtain better microvascular imaging without scanning penalty. In vivo 2D and 3D imaging of human skin was then performed to further demonstrate the benefit of combining multi-beam scanning to obtain improved signal-to-noise ratio (SNR) in microvascular imaging. Such SNR improvement can be as high as 10 dB. To our knowledge, this is the first demonstration of combining different spot size, staggered multiple optical foci scanning, to achieve enhanced SNR for blood flow OCT imaging.


Assuntos
Aumento da Imagem/métodos , Microvasos/diagnóstico por imagem , Unhas/diagnóstico por imagem , Pele/irrigação sanguínea , Tomografia de Coerência Óptica/métodos , Algoritmos , Humanos , Unhas/irrigação sanguínea , Imagens de Fantasmas , Razão Sinal-Ruído , Pele/diagnóstico por imagem , Tomografia de Coerência Óptica/instrumentação
2.
Opt Lett ; 37(14): 2871-3, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825162

RESUMO

Endovascular optical coherence tomography (EV-OCT) is an emerging intravascular imaging technique for observing blood vessel walls. Fluctuating speckle noise, especially during rapid pull-back, can severely degrade the visibility of morphological structures. Moreover, the speckle pattern varies in different parts of the image due to beam divergence and is further complicated by interpolation through the coordinate transformation necessary for displaying the rotary scanning images, challenging the use of frequency domain analysis. In this study, a computationally efficient method using a generalized divergence regularization procedure is presented to suppress speckle noise in EV-OCT images. Results show substantial smoothing of the grainy appearance and enhanced visualization of deeper structures as demonstrated in porcine carotid arteries.


Assuntos
Algoritmos , Vasos Sanguíneos , Aumento da Imagem/métodos , Tomografia de Coerência Óptica/métodos , Animais , Artérias Carótidas , Suínos , Fatores de Tempo
3.
Opt Express ; 18(3): 1909-15, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174019

RESUMO

We report the first Fourier domain modelocked (FDML) laser constructed using optical parametric amplifier (OPA) in conjunction with an erbium-doped fiber amplifier (EDFA), centered at approximately 1555 nm, to the best of our knowledge. We utilize a one-pump OPA and a C-band EDFA in serial configuration with a tunable Fabry-Perot interferometer to generate a hybrid FDML spectrum. Results demonstrate a substantially better spectral shape, output power and stability than individual configurations, with decreased sensitivity to polarization changes. We believe this technique has the potential to enable several amplifiers to complement individual deficiencies resulting in improved spectral shapes and power generation for imaging applications such as optical coherence tomography (OCT).

4.
J Biomed Opt ; 19(8): 086015, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25140883

RESUMO

Speckle statistics of flowing scatterers have been well documented in the literature. Speckle variance optical coherence tomography exploits the large variance values of intensity changes in time caused mainly by the random backscattering of light resulting from translational activity of red blood cells to map out the microvascular networks. A method to map out the microvasculature malformation of skin based on the time-domain histograms of individual pixels is presented with results obtained from both normal skin and skin containing vascular malformation. Results demonstrated that this method can potentially map out deeper blood vessels and enhance the visualization of microvasculature in low signal regions, while being resistant against motion (e.g., patient tremor or internal reflex movements). The overall results are manifested as more uniform en face projection maps of microvessels. Potential applications include clinical imaging of skin vascular abnormalities and wide-field skin angiography for the study of complex vascular networks.


Assuntos
Angiografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microvasos/fisiopatologia , Pele/fisiopatologia , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/fisiopatologia , Tomografia de Coerência Óptica/métodos , Angiografia/instrumentação , Animais , Velocidade do Fluxo Sanguíneo , Interpretação Estatística de Dados , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Pele/irrigação sanguínea , Tomografia de Coerência Óptica/instrumentação
5.
Biomed Opt Express ; 3(10): 2600-10, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23082299

RESUMO

Feasibility of detecting intravascular flow using a catheter based endovascular optical coherence tomography (OCT) system is demonstrated in a porcine carotid model in vivo. The effects of A-line density, radial distance, signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability of the swept wavelength laser and interferometer system on Doppler shift detection limit were investigated in stationary and flow phantoms. Techniques for NURD induced phase shift artifact removal were developed by tracking the catheter sheath. Detection of high flow velocity (~51 cm/s) present in the porcine carotid artery was obtained by phase unwrapping techniques and compared to numerical simulation, taking into consideration flow profile distortion by the eccentrically positioned imaging catheter. Using diluted blood in saline mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular flow and structural OCT imaging of the carotid artery wall was feasible. To our knowledge, this is the first in vivo demonstration of Doppler imaging and absolute measurement of intravascular flow using a rotating fiber catheter in carotid artery.

6.
J Biomed Opt ; 17(5): 056003, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22612126

RESUMO

Carotid angioplasty and stenting is a minimally invasive endovascular procedure that may benefit from in vivo high resolution imaging for monitoring the physical placement of the stent and potential complications. The purpose of this pilot study was to evaluate the ability of optical coherence tomography to construct high resolution 2D and 3D images of stenting in porcine carotid artery. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality 3D images of healthy and stented carotid arteries were constructed, clearly depicting vessel wall morphological features, stent apposition and thrombus formation over the inserted stent. The results demonstrate that OCT can be used to generate high quality 3D images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.


Assuntos
Prótese Vascular , Artérias Carótidas/anatomia & histologia , Artérias Carótidas/cirurgia , Imageamento Tridimensional/métodos , Stents , Cirurgia Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Algoritmos , Animais , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
7.
Biomed Opt Express ; 3(3): 388-99, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22435088

RESUMO

Application of speckle variance optical coherence tomography (OCT) to endovascular imaging faces difficulty of extensive motion artifacts inherently associated with arterial pulsations in addition to other physiological movements. In this study, we employed a technique involving a fourth order statistical method, kurtosis, operating on the endovascular OCT intensity images to visualize the vasa vasorum of carotid artery in vivo and identify its flow dynamic in a porcine model. The intensity kurtosis technique can distinguish vasa vasorum from the surrounding tissues in the presence of extensive time varying noises and dynamic motions of the arterial wall. Imaging of vasa vasorum and its proliferation, may compliment the growing knowledge of structural endovascular OCT in assessment and treatment of atherosclerosis in coronary and carotid arteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa