Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301360

RESUMO

In this paper, aluminum alloy samples were fabricated by selective laser melting (SLM) and subsequently T2 heat treatment was undertaken. In order to obtain comprehensive results, various experiments on densification, hardness, tensile strength, bending strength and microstructure characterization were carried out. The results show that densification of samples after T2 heat treatment does not vary very much from the SLMed ones, while the Brinell hardness and strength decreases to about 50%. Moreover, the plasticity and fracture deflection increases about 3 fold. The effects on the microstructure and the mechanical properties of the SLMed aluminum alloy samples and subsequent T2 heat treatment were studied.

2.
Mater Sci Eng C Mater Biol Appl ; 71: 1099-1105, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987665

RESUMO

Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO3) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO3 composites can be a potential biomedical metallic materials in the medical field.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Compostos de Cálcio/química , Lasers , Silicatos/química , Aço Inoxidável/química , Módulo de Elasticidade , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa