Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Mol Cell Cardiol ; 186: 94-106, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000204

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Linfócitos T Reguladores , Infarto do Miocárdio/terapia
2.
Cell Death Discov ; 10(1): 287, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879568

RESUMO

Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.

3.
iScience ; 26(9): 107662, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37670787

RESUMO

Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.

4.
Sci Adv ; 8(20): eabm9744, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594348

RESUMO

Although strong underwater bioadhesion is important for many biomedical applications, designing adhesives to perform in the presence of body fluids proves to be a challenge. To address this, we propose an underwater and in situ applicable hydrophobic adhesive (UIHA) composed of polydimethylsiloxane, entangled macromolecular silicone fluid, and a reactive silane. The hydrophobic fluid displaced the boundary water, formed an in situ gel, bonded to tissues, and achieved exceptional underwater adhesion strength. Its underwater lap shear adhesion on porcine skin was significantly higher than that of cyanoacrylate and fibrin glues, demonstrating excellent water resistance. The burst pressure of UIHA on porcine skin was 10 times higher than that of fibrin glue. The cytocompatible UIHA successfully sealed ruptured arteries, skin, and lungs in rats, pigs, rabbits, and dogs. Together, the gelation of highly entangled hydrophobic macromolecular fluid provided a means to prepare underwater bioadhesives with strong bonding to tissues and excellent water resistance.

5.
ACS Nano ; 16(4): 5807-5819, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35420780

RESUMO

Triple-negative breast cancer (TNBC) cells have not been usefully classified, and no targeted therapeutic plans are currently available, resulting in a high recurrence rate and metastasis potential. In this research, CD24high cells accounted for the vast majority of TNBC cells, and they were insensitive to Taxol but sensitive to ferroptosis agonists and effectively escaped phagocytosis by tumor-associated macrophages. Furthermore, the NF2-YAP signaling axis modulated the expression of ferroptosis suppressor protein 1 (FSP1) and CD24 in CD24high cells, with subsequent ferroptotic regulation and macrophage phagocytosis. In addition, a precision targeted therapy system was designed based on the pH level and glutathione response, and it can be effectively used to target CD24high cells to induce lysosomal escape and drug burst release through CO2 production, resulting in enhanced ferroptosis and macrophage phagocytosis through FSP1 and CD24 inhibition mediated by the NF2-YAP signaling axis. This system achieved dual antitumor effects, ultimately promoting cell death and thus inhibiting TNBC tumor growth, with some tumors even disappearing. The composite nanoprecision treatment system reported in this paper is a potential strategic tool for future use in the treatment of TNBC.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Transdução de Sinais , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Antígeno CD24/metabolismo , Antígeno CD24/uso terapêutico
6.
Acta Biomater ; 140: 481-491, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879293

RESUMO

The roles of m6A RNA methylation and mitochondrial metabolism in acute myocardial infarction (AMI) remain unclear. In this study, we demonstrated that m6A RNA methylation affected ischemia/reperfusion (I/R) injury in AMI through the "Erasers" protein ALKBH5-related metabolic reprogramming, characterized by the inhibition of enzyme activities of the tricarboxylic acid cycle; moreover, a surface-modified bioengineered ferritin nanocage was obtained from Archaeoglobus fulgidus, with a chimeric structure containing 8 lysine residues, SpyTag/SpyCatcher, and the C1q ligand Scarf1, which could disassemble and self-assemble in neutral solutions according to different Mg2+ concentrations. The surface-modified bioengineered ferritin nanocage targeted the dying cells in the infarct area under the guidance of Scarf1. These cells were then phagocytosed through recognition of their TfR1 receptor. Lysosomal escape was achieved through the 8 lysine residues on the nanocage, and the nanocage disassembled based on the differences in intracellular and extracellular Mg2+ concentrations. Finally, the ALKBH5 inhibitor IOX1 was loaded onto the ferritin nanocage and used in the AMI model, and it was found to effectively improve cardiac function. These results provide a potential strategy for the treatment of AMI in the future. STATEMENT OF SIGNIFICANCE: In acute myocardial infarction (AMI) induced by ischemia/reperfusion injury, m6A RNA methylation aggravates the injury through the "Erasers" protein ALKBH5-related metabolic reprogramming. To achieve precise treatment, genetic engineering-based recombinant expression technology was used to obtain a ferritin from Archaeoglobus fulgidus. The obtained ferritin was designated as HAfFtO, and it can disassemble and self-assemble in a neutral solution under different Mg2+ concentrations and achieve lysosomal escape. Three G4S linkers were used to connect SpyTag with HAfFtO to synthesize HAfFtO-ST and recombination Scarf1 containing SpyCatcher structure, namely SC-Sf. According to the SpyTag/SpyCatcher technique, HAfFtO-ST and SC-Sf can form a gentle and firm combination, namely HSSS. The ALKBH5 inhibitor IOX1 was loaded on HSSS to form HSSS-I. HSSS-I effectively improved the cardiac function and decreased the infarct size in AMI.


Assuntos
Ferritinas , Infarto do Miocárdio , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Humanos , Metilação , Infarto do Miocárdio/metabolismo
7.
Adv Healthc Mater ; 11(22): e2200971, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056927

RESUMO

Regulatory T cells overexpressing SPARC (secreted protein acidic and cysteine rich) (Sparchigh Tregs) can help repair infarct tissues after acute myocardial infarction (AMI). This research demonstrates that Sparchigh Treg-derived extracellular vesicles (EVs) effectively improved cardiac function through proinflammatory factors IL-1ß, IL-6, and TNF-α inhibition and collagen synthesis related gene Col3a1 promotion in AMI; moreover, a composite hydrogel-EVs system (DHPM(4APPC)_EVs) is designed based on Sparchigh Treg-derived EVs with CXCR2 overexpressing and pH/H2 O2 /MMP9 temporally responsive gel microspheres. In AMI, due to the levels of chemokine, pH, H2 O2 , and MMP9 enzymes in the infarct area, DHPM(4APPC)_EVs can effectively target the infarct area, release the loaded EVs, form the gel to capture the released EVs, and slowly release the captured EVs, contribute to promote EVs to stay in the infarct area for a long time to play the repair function, so as to reduce myocardial injury and promote the improvement of cardiac function. The proposed system in this research provides a potential approach for the treatment of AMI in the future.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Humanos , Metaloproteinase 9 da Matriz , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Hidrogéis/metabolismo , Concentração de Íons de Hidrogênio , Osteonectina/metabolismo
8.
Front Cardiovasc Med ; 7: 602345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614738

RESUMO

Atherosclerosis is the pathological basis of many cardiovascular and cerebrovascular diseases. The development of gene chip and high-throughput sequencing technologies revealed that the immune microenvironment of coronary artery disease (CAD) in high-risk populations played an important role in the formation and development of atherosclerotic plaques. Three gene expression datasets related to CAD were assessed using high-throughput profiling. CIBERSORT analysis revealed significant differences in five types of immune cells: activated dendritic cells (DCs), T follicular helper cells (Tfhs), resting CD4+ T cells, regulatory T cells (Tregs), and γδ T cells. Immune transcriptome analysis indicated higher levels of inflammatory markers (cytolytic activity, antigen presentation, chemokines, and cytokines) in the cases than in the controls. The level of activated DCs and the lipid clearance signaling score were negatively correlated. We observed a positive correlation between the fraction of Tfhs and lipid biosynthesis. Resting CD4+ T cells and the activity of pathways related to ossification in bone remodeling and glutathione synthesis showed a negative correlation. Gamma delta T cells negatively correlated with IL-23 signaling activity. GSEA revealed a close association with the inflammatory immune microenvironment. The present study revealed that CAD patients may have an inflammatory immune microenvironment and provides a timely update on anti-inflammatory therapies under current investigation.

9.
J Biomed Nanotechnol ; 16(2): 153-165, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32252877

RESUMO

Although the percutaneous coronary intervention (PCI)treatment can improve the survival rate of acute myocardial infarction (AMI) patients, the early granulocytes response within 6 hours can induce second injuries during the reperfusion process. The new drug delivery system MMP9 hydrolytic microspheres (NMM) with negatively charged surface was designed out and MCC950 (MCC) was loaded into NMM (NMM-M), MCC is the inhibitor of nucleotide binding oligomerization domain (NOD)-like receptor, pyrin containing domain 3 (NLRP3)-inflammasome which is the key promoter of granulocytes-induced injury. NMM-M could effectively escape the phagocytosis of immune phagocytes in the blood, and target the ischemic region based on the electrostatic attraction and the attraction of enzyme to substrate, and sudden release the loaded MCC within 2 hours. The released MCC can inhibit the NLRP3-inflammasome activity, and then further inhibit the secretion of inflammatory factors in granulocytes which are the main factors of early inflammatory damage, and improving cardiac function, realizing the goal of pre-treatment. Therefore, NMM may be a new delivery system, which can provide the accurately, sufficient and rapidly drug deliver, and MCC may be a novel candidate drug in AMI treatment, which may be hopeful in the future.


Assuntos
Infarto do Miocárdio , Humanos , Inflamassomos , Microesferas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Intervenção Coronária Percutânea
11.
RSC Adv ; 8(31): 17357-17364, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35539240

RESUMO

Refractory ulcers are a major challenge in the treatment of a diabetic foot, because of the immunodeficient, ischemic and high-glucose microenvironment. Inflammatory memory peptides, which were extracted from the immune mediator absent in melanoma 2 (AIM2), could effectively improve the immunodeficient microenvironment and special angiogenic peptides could effectively promote angiogenesis. Moreover, the gut flora Akkermansia muciniphila (A. muciniphila) participates in diabetic metabolism and could decrease high-glucose levels. In this research, a polypeptide skeleton (PPS) was synthesized based on 3,4-dihydroxyphenylalanine (DOPA) and peptides, forming the hydrophilic and hydrophobic parts. Inflammatory memory peptides and angiogenic peptides were synthesized and conjugated with the PPS, which then formed an anisotropic hydrogel through the self-assembling of ß-sheet peptides based on hydrophobicity and DOPA oxidation. A. muciniphila was seeded into the hydrogel and transported into diabetic ischemic ulcers through subcutaneous injection, and the healing of diabetic ischemic ulcers was promoted. The inflammatory memory peptides were released based on the A. muciniphila enzyme response, and they firstly improved the immunity of the local surroundings. Then, the angiogenic peptides were also released through irradiation and they promoted angiogenesis. Additionally, the transported A. muciniphila could decrease the local glucose levels and spontaneously regress once the diabetic ischemic ulcers had healed. A. muciniphila combined with a functional polypeptide hydrogel may be a novel strategy for diabetic ischemic ulcer treatment.

12.
Exp Ther Med ; 15(6): 5243-5250, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904408

RESUMO

Refractory ischemic ulcers that occur in patients with diabetes present a major clinical challenge. Embryonic artery cluster of differentiation 133+ cells (EACCs) may promote the healing of diabetic ulcers; however, the high glucose environment in the diabetic ulcers decreases the survival rate of transplanted EACCs and inhibit their biological function. Furthermore, microcirculation in diabetic ischemic ulcers is impaired, which inhibits the beneficial effect of EACCs. In the current study, the Sirt1 agonist SRT1720 was selected as a therapeutic drug and loaded into a dressing composed of PLGA, collagen and silk (PCSS) formed using electrospinning technology. EACCs were seeded onto the PCSS dressing and this was used to treat diabetic ulcers. The results indicated that SRT1720 promotes the proliferation of EACCs, enhances the secretion of vascular endothelial growth factor A, interluekin 8 and basic fibroblast growth factor, and inhibits the secretion of tumor necrosis factor α. Furthermore, SRT1720 promoted the paracrine function of EACCs and promoted the proliferation and migration of human umbilical vein endothelial cells. PCSS induced the steady release of SRT1720 over a 15-day period and PCSS seeded with EACCs (PCSS-EACCs) were transplanted into the diabetic ischemic ulcers of mice with diabetes. The results of these experiments indicated that angiogenesis and the healing of diabetic ischemic ulcers was significantly improved following the transplantation of PCSS-EACCs. Therefore, PCSS-EACCs may be a novel and effective treatment for diabetic ischemic ulcers.

13.
J Biomed Nanotechnol ; 14(5): 968-977, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29883566

RESUMO

Acute myocardial infarction leads to heart failure due to inadequate regeneration of cardiomyocytes. Therefore, promotion of cardiomyocyte proliferation is the key for the restoration of cardiac function. Induction of the cell cycle and the downregulation of genes that inhibit cardiomyocyte proliferation could induce cardiomyocyte to re-enter into the proliferative state. Hsa-miR-590-3p has good application prospects in myocardial proliferation since it could downregulate the expression of genes inhibiting cell proliferation such as Hopx. However, delivering sufficient hsa-miR-590-3p to the infarct area with non-invasive and non-viral methods efficiently and rapidly is challenging. Based on the high expression of cTnI in the microenvironment of infarct area, we used gene transfection to express a cTnI-targeted short peptide on the surface of mesenchymal stem cells to obtain cTnI-targeted exosomes. These exosomes could localize to infarct area along a cTnI concentration gradient. Exosomes carrying hsa-miR-590-3p were endocytosis by cardiomyocytes and thus promoted cardiomyocyte proliferation in the peri-infarct area and eventually restored cardiac function. Our results show that targeted exosome is a minimally invasive, non-viral, efficient, and rapid delivery system for the treatment of acute myocardial infarction.


Assuntos
Exossomos , Infarto do Miocárdio , Humanos , MicroRNAs
14.
Biomaterials ; 127: 117-131, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28284103

RESUMO

Myocardial infarction (MI) is a serious ischemic condition affecting many individuals around the world. Vascular endothelial growth factor (VEGF) is considered a promising factor for enhancing cardiac function by promoting angiogenesis. However, the lack of a suitable method of VEGF delivery to the MI area is a serious challenge. In this study, we screened a suitable delivery carrier with favorable biocompatibility that targeted the MI area using the strategy of an inherent structure derived from the body and that was based on characteristics of the MI. Mesenchymal stem cells (MSCs) are important infiltrating cells that are derived from blood and have an inherent tropism for the MI zone. We hypothesized that VEGF-encapsulated MSCs targeting MI tissue could improve cardiac function by angiogenesis based on the tropism of the MSCs to the MI area. We first developed VEGF-encapsulated MSCs using self-assembled gelatin and alginate polyelectrolytes to improve angiogenesis and cardiac function. In vitro, the results showed that VEGF-encapsulated MSCs had a sustained release of VEGF and tropism to SDF-1. In vivo, VEGF-encapsulated MSCs migrated to the MI area, enhanced cardiac function, perfused the infarcted area and promoted angiogenesis. These preclinical findings suggest that VEGF-loaded layer-by-layer self-assembled encapsulated MSCs may be a promising and minimally invasive therapy for treating MI. Furthermore, other drugs loaded to layer-by-layer self-assembled encapsulated MSCs may be promising therapies for treating other diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Testes de Função Cardíaca , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Forma Celular , Quimiocina CXCL12/metabolismo , Eletrocardiografia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Perfusão , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Fatores de Tempo , Tropismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Microtomografia por Raio-X
15.
Adv Sci (Weinh) ; 3(12): 1600254, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27981013

RESUMO

Acute myocardial infarction (AMI) is the death of cardiomyocytes caused by a lack of energy due to ischemia. Nutrients supplied by the blood are the main source of cellular energy for cardiomyocytes. Sodium butyrate (NaB), a gastrointestinal nutrient, is a short-chain fatty acid (butyric acid) that may act as an energy source in AMI therapy. Poly(lactic-co-glycolic acid)-Poly (N-isopropylacrylamide) microspheres loaded with NaB (PP-N) are synthesized to prolong the release of NaB and are injected into ischemic zones in a Sprague-Dawley rat AMI model. Here, this study shows that PP-N can significantly ameliorate cardiac dysfunction in AMI, and NaB can specially bind to Sirt3 structure, activating its deacetylation ability and inhibiting the generation of reactive oxygen species, autophagy, and angiogenesis promotion. The results indicate that NaB, acting as a nutrient, can protect cardiomyocytes in AMI. These results suggest that the gastrointestinal nutrient NaB may be a new therapy for AMI treatment, and PP-N may be the ideal therapeutic regimen.

16.
Autophagy ; 11(2): 403-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831015

RESUMO

ATG4 plays a key role in autophagy induction, but the methods for monitoring ATG4 activity in living cells are limited. Here we designed a novel fluorescent peptide named AU4S for noninvasive detection of ATG4 activity in living cells, which consists of the cell-penetrating peptide (CPP), ATG4-recognized sequence "GTFG," and the fluorophore FITC. Additionally, an ATG4-resistant peptide AG4R was used as a control. CPP can help AU4S or AG4R to penetrate cell membrane efficiently. AU4S but not AG4R can be recognized and cleaved by ATG4, leading to the change of fluorescence intensity. Therefore, the difference between AU4S- and AG4R-measured fluorescence values in the same sample, defined as "F-D value," can reflect ATG4 activity. By detecting the F-D values, we found that ATG4 activity paralleled LC3B-II levels in rapamycin-treated cells, but neither paralleled LC3B-II levels in starved cells nor presented a correlation with LC3B-II accumulation in WBCs from healthy donors or leukemia patients. However, when DTT was added to the system, ATG4 activity not only paralleled LC3B-II levels in starved cells in the presence or absence of autophagy inhibitors, but also presented a positive correlation with LC3B-II accumulation in WBCs from leukemia patients (R(2) = 0.5288). In conclusion, this study provides a convenient, rapid, and quantitative method to monitor ATG4 activity in living cells, which may be beneficial to basic and clinical research on autophagy.


Assuntos
Autofagia/fisiologia , Membrana Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Proteínas Relacionadas à Autofagia , Sobrevivência Celular , Células Cultivadas , Fluorescência , Hepatócitos/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Ratos
17.
Leuk Lymphoma ; 54(10): 2263-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23398207

RESUMO

(-)- Gossypol, a natural inhibitor of anti-apoptotic Bcl-2 proteins, has presented an effective anti-tumor activity in numerous preclinical trials. More and more evidence in vivo and in vitro validates that (-)- gossypol can dramatically suppress cell proliferation and induce cell death in hematological malignancies. However, the detailed mechanisms are not well known. In the present study, we showed that treatment with (-)- gossypol stimulated reactive oxygen species (ROS) generation and induced autophagy in Burkitt lymphoma cells. Antioxidant N-acetyl-cysteine (NAC) pretreatment attenuated (-)- gossypol-induced autophagy. Furthermore, (-)- gossypol treatment increased the translocation of high mobility group box 1 (HMGB1) from nuclei to cytoplasm, which can be suppressed by NAC pretreatment. NAC pretreatment also dramatically enhanced (-)- gossypol-induced apoptosis and total cell death. These results indicate that (-)- gossypol induces a protective autophagy in Burkitt lymphoma cells, partly due to ROS induction and cytosolic translocation of HMGB1. Antioxidants may serve as potent chemosensitizers to enhance cell death through blocking (-)- gossypol-induced autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Linfoma de Burkitt/metabolismo , Gossipol/farmacologia , Proteína HMGB1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citosol/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa