Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 058201, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364139

RESUMO

We unravel hydrogen bonding dynamics and their relationship with supramolecular relaxations of monohydroxy alcohols (MAs) at intermediate times. The rheological modulus of MAs exhibits Rouse scaling relaxation of G(t)∼t^{-1/2} switching to G(t)∼t^{-1} at time τ_{m} before their terminal time. Meanwhile, dielectric spectroscopy reveals clear signatures of new supramolecular dynamics matching with τ_{m} from rheology. Interestingly, the characteristic time τ_{m} follows an Arrhenius-like temperature dependence over exceptionally wide temperatures and agrees well with the hydrogen bonding exchange time from nuclear magnetic resonance measurements. These observations demonstrate the presence of Rouse modes and active chain swapping of MAs at intermediate times. Moreover, detailed theoretical analyses point out explicitly that the hydrogen bonding exchange truncates the Rouse dynamics of the supramolecular chains and triggers the chain-swapping processes, supporting a recently proposed living polymer model.

2.
Soft Matter ; 20(21): 4257-4269, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757213

RESUMO

Recent experimental studies have revealed a lack of universality in the extensional behavior of linear polymers, which is not envisioned by classical molecular theories. These surprising findings, particularly the sharp contrast between polymer melts and solutions, have catalyzed the development of new theoretical ideas, including the concept of friction reduction in highly stretched polymer melts. By presenting evidence from rheology and small-angle neutron scattering, this work shows that deformation-induced demixing, which is due to the viscoelastic asymmetry in binary mixtures, contributes to the observed nonuniversality. In the case of polystyrene/oligostyrene blends, demixing increases the effective glass transition temperature of the long chain, leading to an apparent friction enhancement. On the other hand, the opposite case is found for the polystyrene/poly(α-methylstyrene) blend. These results highlight the important influence of deformation-induced concentration fluctuations on polymer segmental friction.

3.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506298

RESUMO

Polymers under nanoconfinement can exhibit large alterations in dynamics from their bulk values due to an interface effect. However, understanding the interface effect remains a challenge, especially in the ultrafine nanoconfinement region. In this work, we prepare new geometries with ultrafine nanoconfinement ∼10nm through controlled distributions of the crystalline phases and the amorphous phases of a model semi-crystalline polymer, i.e., the polylactic acid. The broadband dielectric spectroscopy measurements show that ultrafine nanoconfinement leads to a large elevation in the glass transition temperature and a strong increment in the polymer fragility index. Moreover, new relaxation time profile analyses demonstrate a spatial gradient that can be well described by either a single-exponential decay or a double-exponential decay functional form near the middle of the film with a collective interface effect. However, the dynamics at the 1-2 nm vicinity of the interface exhibit a power-law decay that is different from the single-exponential decay or double-exponential decay functional forms as predicted by theories. Thus, these results call for further investigations of the interface effect on polymer dynamics, especially for interfaces with perturbed chain packing.

4.
Phys Rev Lett ; 130(9): 098201, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930926

RESUMO

Rheo-dielectric spectroscopy is employed to investigate the effect of external shear on Debye-like relaxation of a model monohydroxy alcohol, i.e., the 2-ethyl-1-hexanol (2E1H). Shear deformation leads to strong acceleration in the structural relaxation, the Debye relaxation, and the terminal relaxation of 2E1H. Moreover, the shear-induced reduction in structural relaxation time, τ_{α}, scales quadratically with that of Debye time, τ_{D}, and the terminal flow time, τ_{f}, suggesting a relationship of τ_{D}^{2}∼τ_{α}. Further analyses reveal τ_{D}^{2}/τ_{α} of 2E1H follows Arrhenius temperature dependence that applies remarkably well to many other monohydroxy alcohols with different molecular sizes, architectures, and alcohol types. These results cannot be understood by the prevailing transient chain model, and suggest a H-bonding breakage facilitated sub-supramolecular reorientation as the origin of Debye relaxation of monohydroxy alcohols, akin to the molecular mechanism for the terminal relaxation of unentangled "living" polymers.

5.
Phys Rev Lett ; 130(22): 228101, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327427

RESUMO

An associative polymer carries many stickers that can form reversible associations. For more than 30 years, the understanding has been that reversible associations change the shape of linear viscoelastic spectra by adding a rubbery plateau in the intermediate frequency range, at which associations have not yet relaxed and thus effectively act as crosslinks. Here, we design and synthesize new classes of unentangled associative polymers carrying unprecedentedly high fractions of stickers, up to eight per Kuhn segment, that can form strong pairwise hydrogen bonding of ∼20k_{B}T without microphase separation. We experimentally show that reversible bonds significantly slow down the polymer dynamics but nearly do not change the shape of linear viscoelastic spectra. This behavior can be explained by a renormalized Rouse model that highlights an unexpected influence of reversible bonds on the structural relaxation of associative polymers.


Assuntos
Polímeros , Polímeros/química , Ligação de Hidrogênio
6.
Soft Matter ; 18(46): 8867-8884, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36377377

RESUMO

The relaxation dynamics of polystyrene (PS)/silica nanocomposites after a large step deformation are studied by a combination of small-angle scattering techniques and rheology. Small-angle X-ray scattering measurements and rheology show clear signatures of nanoparticle aggregation that enhances the mechanical properties of the polymer nanocomposites (PNCs) in the linear viscoelastic regime and during the initial phase of stress relaxation along with accelerated relaxation dynamics. Small-angle neutron scattering experiments under the zero-average-contrast condition reveal, however, smaller structural anisotropy in the PNCs than that in the neat polymer matrix, as well as accelerated anisotropy relaxation. In addition, the degrees of anisotropy reduction and relaxation dynamics acceleration increase with increasing nanoparticle loading. These results are in sharp contrast to the prevailing viewpoint of enhanced molecular deformation as the main mechanism for the mechanical enhancement in PNCs. Furthermore, the observed acceleration of stress relaxation and reduction in structural anisotropy point to two types of nonlinear effects in the relaxation dynamics of PNCs at large deformation.

7.
Phys Rev Lett ; 126(11): 117801, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798376

RESUMO

The microscopic origin of mechanical enhancement in polymer nanocomposite (PNC) melts is investigated through the combination of rheology and small-angle neutron scattering. It is shown that in the absence of an extensive particle network, the molecular deformation of polymer chains dominates the stress response on intermediate time scales. Quantitative analyses of small-angle neutron scattering spectra, however, reveal no enhanced structural anisotropy in the PNCs, compared with the pristine polymers under the same deformation conditions. These results demonstrate that the mechanical reinforcement of PNCs is not due to molecular overstraining, but instead a redistribution of strain field in the polymer matrix, akin to the classical picture of hydrodynamic effect of nanoparticles.

8.
J Chem Phys ; 152(9): 094904, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480747

RESUMO

We study experimentally the temperature evolution of the thickness of the interfacial layer, Lint(T), between bulk matrices and the surface of nanoparticles in nanocomposites through broadband dielectric spectroscopy. Analyses revealed a power-law dependence between the logarithm of structural relaxation time in the interfacial layer, τint(T), and the Lint(T): lnτint(T)/τ0∝Lint ß(T)/T, with τ0 ∼ 10-12 s, and ß index ∼0.67 at high temperatures and ∼1.7 at temperatures close to the glass transition temperature. In addition, our analysis revealed that the Lint(T) is comparable to the length scale of dynamic heterogeneity estimated from previous nonlinear dielectric measurements and the four-point NMR [ξNMR(T)], with Lint(T) ∼ ξNMR(T). These observations may suggest a direct correlation between the Lint(T) and the size of the cooperatively rearranging regions and have strong implications for understanding the dynamic heterogeneity and cooperativity in supercool liquids and their role in interfacial dynamics.

9.
Soft Matter ; 14(7): 1235-1246, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29355867

RESUMO

Associating polymers are a class of materials with widely tunable macroscopic properties. Here, we investigate telechelic poly(dimethylsiloxanes) of several molecular weights (MW) with different hydrogen bonding end groups. Besides the well-established increase of the glass transition temperature Tg with decreasing MW, Tg remains unchanged as the end group varies from NH2 over OH to COOH. For the latter system, a 2nd Tg is found which indicates a segregated phase. In contrast, rheological measurements reveal a qualitative difference in the viscoelastic response of NH2-terminated and COOH-terminated chains. Both systems show clear signs of end group association, but only the latter exhibits an extended rubbery plateau. All features observed in the rheology experiments have corresponding processes in the dielectric measurements. This provides insight into the underlying molecular mechanisms, and especially reveals that many end groups of the COOH-terminated chains phase segregate while a certain fraction forms binary associates and remains non-segregated. In contrast, the NH2-terminated systems form only binary associates increasing the effective chain length, whereas the COOH-terminated system consists of two types of associates forming a crosslinked network. Remarkably, a single species of end group forms two qualitatively different types of associates: transient bonds which allow stress release by a bond-partner exchange mechanism, and effectively permanent bonds formed by a phase segregated fraction of end groups which are stable on the timescale of the transient mechanism.

10.
Soft Matter ; 13(29): 5084, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28703250

RESUMO

Correction for 'Finite cohesion due to chain entanglement in polymer melts' by Shiwang Cheng et al., Soft Matter, 2016, 12, 3340-3351.

11.
J Chem Phys ; 146(20): 203201, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571333

RESUMO

In recent years it has become clear that the interfacial layer formed around nanoparticles in polymer nanocomposites (PNCs) is critical for controlling their macroscopic properties. The interfacial layer occupies a significant volume fraction of the polymer matrix in PNCs and creates strong intrinsic heterogeneity in their structure and dynamics. Here, we focus on analysis of the structure and dynamics of the interfacial region in model PNCs with well-dispersed, spherical nanoparticles with attractive interactions. First, we discuss several experimental techniques that provide structural and dynamic information on the interfacial region in PNCs. Then, we discuss the role of various microscopic parameters in controlling structure and dynamics of the interfacial layer. The analysis presented emphasizes the importance of the polymer-nanoparticle interactions for the slowing down dynamics in the interfacial region, while the thickness of the interfacial layer appears to be dependent on chain rigidity, and has been shown to increase with cooling upon approaching the glass transition. Aside from chain rigidity and polymer-nanoparticle interactions, the interfacial layer properties are also affected by the molecular weight of the polymer and the size of the nanoparticles. In the final part of this focus article, we emphasize the important challenges in the field of polymer nanocomposites and a potential analogy with the behavior observed in thin films.

12.
Nano Lett ; 16(6): 3630-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203453

RESUMO

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

13.
Phys Rev Lett ; 116(3): 038302, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849618

RESUMO

The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

14.
Soft Matter ; 12(14): 3340-51, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26931322

RESUMO

Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts.

15.
J Chem Phys ; 143(19): 194704, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26590550

RESUMO

The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

16.
J Chem Phys ; 141(9): 094905, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25194392

RESUMO

This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature, can cause f(cp) to rise above its ambient value, reaching 0.6 nN at 0.8 kbar. Our theoretical description identifies the areal density ψ of LBSs in the chain network as the key structural parameter to depict the characteristics of the BDT for all polymer glasses made of flexible (Gaussian) linear chains. In particular, it explains the surprising linear correlation between the tensile stress σ(BD) at the BDT and ψ. Moreover, the theoretical picture elucidates how and why each of the following four factors can change the coordinates (σ(BD), T(BD)) of the BDT: (i) mechanical "rejuvenation" (i.e., large deformation below T(g)), (ii) physical aging, (iii) melt stretching, and (iv) pressurization. Finally, two methods are put forward to delineate the degree of vitrification among various polymer glasses. First, we plot the distance of the BDT from T(g), i.e., T(g)/T(BD) as a function of ψ to demonstrate that different classes of polymer glasses with varying degree of vitrification show different functional dependence of T(g)/T(BD) on ψ. Second, we plot the tensile yield stress σ(Y) as a function T(g)/T to show that bisphenol-A polycarbonate (bpA-PC) is less vitreous than PS and PMMA whose σ(Y) is considerably higher and shows much stronger dependence on T(g)/T than that of bpA-PC.

17.
ACS Appl Mater Interfaces ; 16(17): 22715-22723, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626804

RESUMO

Direct air capture (DAC) of CO2 is a carbon-negative technology to mitigate carbon emissions, and it requires low-cost sorbents with high CO2 sorption capacity that can be easily manufactured on a large scale. In this work, we develop highly porous membrane adsorbents comprising branched polyethylenimine (PEI) impregnated in low-cost, porous Solupor supports. The effect of the PEI molecular mass and loading on the physical properties of the adsorbents is evaluated, including porosity, degradation temperature, glass transition temperature, and CO2 permeance. CO2 capture from simulated air containing 400 ppm of CO2 in these sorbents is thoroughly investigated as a function of temperature and relative humidity (RH). Polymer dynamics was examined using differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS), showing that CO2 sorption is limited by its diffusion in these PEI-based sorbents. A membrane adsorbent containing 48 mass% PEI (800 Da) with a porosity of 72% exhibits a CO2 sorption capacity of 1.2 mmol/g at 25 °C and RH of 30%, comparable to the state-of-the-art adsorbents. Multicycles of sorption and desorption were performed to determine their regenerability, stability, and potential for practical applications.

18.
Dent Mater ; 40(5): 800-810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485599

RESUMO

OBJECTIVES: Heterogeneity and phase separation during network polymerization is a major issue contributing to the failure of dental adhesives. This study investigates how the ratio of hydrophobic crosslinkers to hydrophilic comonomer (C/H ratio), as well as cosolvent fraction (ethanol/water) influences the degree of heterogeneity and proclivity for phase separation in a series of model adhesive formulations. METHODS: Twelve formulations were investigated, with 4 different C/H ratios (7:1, 2.2:1, 1:1, 0.5:1) and 3 different overall cosolvent fractions (0, 10 and 20 wt%). The heterogeneity and phase behavior were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), dynamic mechanical analysis (DMA), small-angle x-ray scattering (SAXS) and atomic force microscopy (AFM). RESULTS: In resins without cosolvent, all characterizations confirm reduced heterogeneity as C/H ratio decreases. However, when 10 or 20 wt% of cosolvent is included in the adhesive formulation, a higher degree of heterogeneity and even distinct phase separation with domains ranging from a few hundreds of nanometers to a few micrometers in size form. This is particularly noticeable at lower C/H ratios, which is surprising as HEMA is commonly considered a compatibilizer between hydrophobic crosslinkers and aqueous (co)solvents. SIGNIFICANCE: Our experiments demonstrate that formulations with lower C/H ratio and thus a lower viscosity experience later onsets of diffusion limitations during polymerization, which favors thermodynamically driven phase separation. Therefore, to determine or predict the resulting phase structure of adhesive materials, it is necessary to consider the kinetics and diffusion constraints during the formation of the polymer network and not just the compatibility of resin constituents.


Assuntos
Teste de Materiais , Microscopia de Força Atômica , Polimerização , Difusão , Espectroscopia de Infravermelho com Transformada de Fourier , Interações Hidrofóbicas e Hidrofílicas , Difração de Raios X , Espalhamento a Baixo Ângulo , Reagentes de Ligações Cruzadas/química , Cimentos Dentários/química , Solventes/química , Água/química
19.
ACS Appl Mater Interfaces ; 16(8): 11116-11124, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372265

RESUMO

Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO2/N2 separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO2 permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, d-spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.

20.
Phys Rev Lett ; 110(6): 065506, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432274

RESUMO

This Letter reports elastic-driven internal yielding in strained ductile polymer glasses. After cold drawing of two different polymer glasses to neck at room temperature, we show that the samples display considerable retractive stress when warmed up above the storage temperature but still considerably below their glass transition temperatures. We conclude that the elastic yielding arises from the distortion of backbones leading to intra-segmental tension in the chain network.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa