Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(2): 1153-1166, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440478

RESUMO

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.


Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Transcriptoma , Frutas/metabolismo , Genômica
2.
Funct Integr Genomics ; 22(5): 783-795, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35854188

RESUMO

Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape. After that, the conserved sites of VviJMJ genes were revealed by protein sequence analysis. In addition, chromosomal localization and gene structure analysis revealed the heterogeneous distribution of VviJMJ genes on grape chromosomes and the structural features of VviJMJ genes, respectively. Analysis of promoter cis-acting elements demonstrated numerous hormone, light, and stress response elements in the promoter region of the VviJMJ genes. Subsequently, the grape fruit was treated with MTA (an H3K4 methylation inhibitor), which significantly resulted in the early ripening of grape fruits. The qRT-PCR analysis showed that VviJMJ genes (except VviJMJ13c) had different expression patterns during grape fruit development. The expression of VviJMJ genes in the treatment group was significantly higher than that in the control group. The results indicate that VviJMJ genes are closely related to grape fruit ripening.


Assuntos
Arabidopsis , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Hormônios , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo
3.
Int J Ophthalmol ; 17(3): 583-595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721509

RESUMO

Multiple evanescent white dot syndrome (MEWDS) is a rare fundus disease, characterized by acute vision loss and visual field defects. Many previous studies have explained the possible pathogenesis and clinical features of primary MEWDS. However, as the number of reported cases increases, secondary MEWDS occurs in other related retinal diseases and injuries, exhibiting some special characteristics. The associated retinal diseases include multifocal choroiditis/punctate inner choroidopathy (MFC/PIC), acute zonal occult outer retinopathy, best vitelliform macular dystrophy, pseudoxanthoma elasticum, and ocular toxoplasmosis. The related retinal injury is laser photocoagulation, surgery, and trauma. Although primary MEWDS often have a self-limiting course, secondary MEWDS may require treatment in some cases, according to the severity of concomitant diseases and complications. Notably, MEWDS secondary to MFC/PIC that is prone to forming choroidal neovascularization and focal choroidal excavation, needs positive treatment with corticosteroids. The possible underlying pathogenesis of secondary MEWDS is the exposure of choroidal antigen after the disruption of Bruch's membrane. The MEWDS-related features in secondary MEWDS are still evanescent under most circumstances. Its prognosis and treatment depend on the severity of complications. Current studies propose that the etiology is associated with immune factors, including viral infection, inflammation in choroid and Bruch's membrane, and antigen exposure caused by retinal and/or choroidal insults. More pathogenic studies should be conducted in the future. Accurate diagnosis for secondary MEWDS could benefit patients in aspects of management and prognosis.

7.
Biochem Cell Biol ; 85(2): 218-26, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17534403

RESUMO

Chlamydia trachomatis is a kind of obligate intracellular bacterial pathogen that causes ocular and sexually transmitted diseases. In this study, we analyzed the codon usage patterns of the C. trachomatis mouse pneumonitis biovar (MoPn) and Homo sapiens. We found large differences between MoPn and human codon usages. To enhance the expression of Chlamydia protein in mammalian cells, the DNA sequence encoding the major outer-membrane protein (MOMP) of MoPn was modified to substitute the human-preferred codons for rarely used codons. The huma-optimized MOMP gene was synthesized and cloned into the pcDNA3 vector, as was the wild-type MOMP gene. The protein expression levels of the human-optimized MOMP and wild-type MOMP genes were compared. The experiments showed that the human-optimized MOMP gene produced significantly higher levels of MOMP protein than the wild-type MOMP, both in vitro and in vivo, but no obvious difference was observed in the levels of modified and native MOMP mRNA expression. The immunogenicity of the 2 constructs was examined using BALB/c mice following intramuscular immunization. The results showed that the mice immunized with the human-optimized MOMP produced higher levels of antigen-specific IgG antibody and showed stronger delayed-type hypersensitivity reactions and proliferative T cell responses than those immunized with the wild-type MOMP. Antigen-specific stimulation of spleen cells obtained from human MOMP DNA immunized mice produced higher levels of interferon-gamma than those obtained from wild-type MOMP DNA immunized mice. Taken together, the data show that human-optimized codon optimization can significantly enhance the gene expression and immunogenicity of the C. trachomatis MOMP DNA vaccine.


Assuntos
Formação de Anticorpos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/efeitos dos fármacos , Especificidade de Anticorpos/genética , Especificidade de Anticorpos/imunologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Códon/genética , Códon/imunologia , Feminino , Genes Bacterianos/imunologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/genética , Vacinas de DNA/farmacocinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa