RESUMO
A porous geopolymer with adsorption and photocatalytic degradation functions was successfully developed by utilizing Ti-bearing blast furnace slag (TBBFS) as the raw material. The prepared porous geopolymers were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, and Fourier transform infrared spectrum. Selective crystallization, water quenching, and natural cooling methods were employed to investigate the influences of these modifications on the applicability of TBBFS as a precursor for geopolymer synthesis. Water-quenched slag with amorphous content was prone to alkali dissolution, and the resulting geopolymer exhibited the highest adsorption capacity (97.18 mg/g) for methylene blue (MB) removal. Selective crystallization at 1400 °C generated a hybrid microstructure consisting of a non-cementitious CaTiO3 crystallization phase and a cementitious amorphous fraction. The retention of CaTiO3 in the final geopolymer enables a bifunctionality in adsorption-photodegradation. Particularly, the adsorption and photodegradation processes under various conditions were investigated. The superior removal efficiency for MB could be attributed to the synergistic effects between the geopolymer matrix and CaTiO3, leading to an enhancement in the formation of hydroxyl radicals. The conversion of TBBFS into porous geopolymer offers an efficient and straightforward solution for slag utilization and dye removal.
RESUMO
A natural ursolic compound, 2α,3ß-dihydroxy-urs-12-en-28-oic acid (corosolic acid, CRA) was isolated from the root of Actinidia valvata Dunn. (A. valvata Radix). Since a large number of triterpenoid compound has marked anticancer effects toward various types of cancer cell lines in vitro, this study was carried out to investigate the anticancer effect of CRA in human gastric cancer cell line BGC823 cells and the underlying apoptotic mechanism of CRA was examined in BGC823 cell lines. The results showed that CRA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner. CRA also significantly increased the sub G1 population by cell cycle analysis in a concentration dependent manner. Exposure to CRA decreased p65, bcl-2, Fas, smac mRNA and protein expression, and increased IκBα, bax, survivin mRNA and protein expression. Results of immunofluorescence staining and EMSA further indicated CRA induced apoptosis by inhibiting nuclear translocation of nuclear factor NF-κB subunit p65. Consistently overall, our findings suggest that CRA induces apoptosis via inhibition of NF-κB (p65) expression level and activation of IκBα in BGC cells as a potent anticancer candidate for gastric cancer treatment.