Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 227: 122-128, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31002923

RESUMO

Neuropathic orofacial pain conditions represent a challenge to diagnose and treat. Natural substances are promising therapeutic options for the control of pain. AIMS: This study aimed to examine whether (-)-α-bisabolol (BISA), a natural terpene, can attenuate nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain. MATERIALS AND METHODS: Infraorbital nerve transection (IONX) or sham operation was performed in adult male rats. Head withdrawal thresholds as a measure of facial mechanical sensitivity were tested with von Frey monofilaments applied bilaterally to the facial vibrissal pad pre-operatively (baseline) and then post-operatively before and at 60, 120, 240 and 360 min after administration of vehicle control per oris (p.o.) or BISA (200 mg/kg p.o.) (n = 8/group). Effects of BISA or vehicle on the activity of nociceptive neurons recorded in the medullary dorsal horn (MDH) were tested on post - operative day 8-10. ANOVA followed by post-hoc Bonferroni tested for statistically significant differences (p < 0.05) across study groups and time points. KEY FINDINGS: IONX animals (but not sham or naïve animals) showed post-operative facial mechanical hypersensitivity that was unaffected by vehicle. However, administration of BISA at post-operative day 7 significantly reversed the mechanical hypersensitivity in IONX rats; this effect lasted for at least 6 h. BISA also attenuated IONX-induced central sensitisation of MDH nociceptive neurons, as reflected in reversal of their reduced activation thresholds, increased responses to graded mechanical stimuli and enhanced spontaneous activity. SIGNIFICANCE: BISA may attenuate nociceptive behaviour and central sensitisation in a rat model of acute trigeminal neuropathic pain.


Assuntos
Dor Facial/tratamento farmacológico , Neuralgia/tratamento farmacológico , Sesquiterpenos/farmacologia , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Traumatismos do Nervo Facial/tratamento farmacológico , Hiperalgesia , Masculino , Sesquiterpenos Monocíclicos , Nociceptividade/efeitos dos fármacos , Nociceptores , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/metabolismo , Nervo Trigêmeo/efeitos dos fármacos , Neuralgia do Trigêmeo/tratamento farmacológico
2.
Neuroscience ; 114(2): 279-83, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12204197

RESUMO

Numerous studies have been done on the effect of nerve injury on neurons of sensory ganglia but little is known about the contribution of satellite glial cells (SCs) in these ganglia to post-injury events. We investigated cell-to-cell coupling and ultrastructure of SCs in mouse dorsal root ganglia after nerve injury (axotomy). Under control conditions SCs were mutually coupled, but mainly to other SCs around a given neuron. After axotomy SCs became extensively coupled to SCs that enveloped other neurons, apparently by gap junctions. Serial section electron microscopy showed that after axotomy SC sheaths enveloping neighboring neurons formed connections with each other. Such connections were absent in control ganglia. The number of gap junctions between SCs increased 6.5-fold after axotomy. We propose that axotomy induces growth of perineuronal SC sheaths, leading to contacts between SCs enveloping adjacent neurons and to formation of new gap junctions between SCs. These changes may be an important mode of glial plasticity and can contribute to neuropathic pain.


Assuntos
Gânglios Espinais/fisiopatologia , Neuralgia/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células Satélites Perineuronais/fisiologia , Animais , Comunicação Celular/fisiologia , Feminino , Gânglios Espinais/lesões , Gânglios Espinais/patologia , Junções Comunicantes/patologia , Junções Comunicantes/fisiologia , Junções Comunicantes/ultraestrutura , Isoquinolinas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Neuralgia/patologia , Neurônios Aferentes/patologia , Neurônios Aferentes/ultraestrutura , Doenças do Sistema Nervoso Periférico/patologia , Células Satélites Perineuronais/patologia , Células Satélites Perineuronais/ultraestrutura , Regulação para Cima/fisiologia
3.
Neuroscience ; 120(4): 969-77, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12927203

RESUMO

There is strong evidence for the presence of nucleotide (P2) receptors in sensory neurons, which might play a role in the transmission of pain signals. In contrast, virtually nothing is known about P2 receptors in satellite glial cells (SGCs), which are the main glial cells in sensory ganglia. We investigated the possibility that P2 receptors exist in SGCs in murine trigeminal ganglia, using Ca(2+) imaging, patch-clamp recordings, and immunohistochemistry. We found that ATP caused an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in SGCs. As adenosine had no effect on [Ca(2+)](i), and the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid largely blocked the response to ATP we conclude that P1 receptors did not contribute to the responses. We obtained the following evidence that the responses to ATP were mediated by metabotropic P2Y receptors: (i) persistence of the responses in Ca(2+)-free solution, (ii) inhibition of the response by cyclopiazonic acid, (iii) [Ca(2+)](i) increases in response to the P2Y agonists uridine triphosphate, adenosine thiodiphosphate, and 2-methylthio ADP, and (iv) failure of the P2X agonist alpha,beta-methylene ATP to elicit a response. Agonists of P2Y(1) receptors and uridine triphosphate, an agonist at P2Y(2) and P2Y(4) receptors, induced [Ca(2+)](i) increases suggesting that at least these P2Y receptor subtypes are present on SGCs. Using an antibody against the P2Y(4) receptor, we found immunopositive SGCs. Patch-clamp recordings of SGCs did not reveal any inward current due to ATP. Therefore, there was no evidence for the activation of ionotropic P2X receptors under the present conditions. The results indicate the presence of functional nucleotide (P2Y) receptors in SGCs.


Assuntos
Fura-2/análogos & derivados , Neuroglia/fisiologia , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2/fisiologia , Gânglio Trigeminal/fisiologia , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/agonistas , Animais , Cálcio/metabolismo , Carbocianinas/metabolismo , Citofotometria/instrumentação , Citofotometria/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/administração & dosagem , Feminino , Fura-2/metabolismo , Glutamato-Amônia Ligase/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Indóis/administração & dosagem , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Inibidores da Agregação Plaquetária/administração & dosagem , Fosfato de Piridoxal/administração & dosagem
4.
Anat Embryol (Berl) ; 206(5): 337-47, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12698360

RESUMO

This study investigated satellite cell changes in mouse L4 and L5 spinal ganglia 14 days after unilateral transection of sciatic and saphenous nerves. The ganglia were studied under the electron microscope in single and serial sections, and by dye injection. Satellite cell responses to axon injury of the neurons with which they are associated included the formation of bridges connecting previously separate perineuronal sheaths and the formation of new gap junctions, resulting in more extensive cell coupling. Some possible consequences of these satellite cell reactions are briefly discussed.


Assuntos
Axônios/ultraestrutura , Gânglios Espinais/ultraestrutura , Junções Comunicantes/ultraestrutura , Neurônios/ultraestrutura , Células Satélites Perineuronais/ultraestrutura , Traumatismos da Medula Espinal/patologia , Animais , Axônios/metabolismo , Denervação , Feminino , Corantes Fluorescentes/metabolismo , Gânglios Espinais/metabolismo , Isoquinolinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Neurônios/metabolismo , Células Satélites Perineuronais/metabolismo , Traumatismos da Medula Espinal/metabolismo
5.
Neuroscience ; 218: 359-66, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22609939

RESUMO

Our previous studies have demonstrated that application of inflammatory irritant mustard oil (MO) to the tooth pulp induces medullary glutamate release and central sensitization in the rat medullary dorsal horn (MDH), as well as nociceptive sensorimotor responses in craniofacial muscles in rats. There is recent evidence that anticonvulsant drugs such as pregabalin that influence glutamatergic neurotransmission are effective in several pain states. The aim of this study was to examine whether systemic administration of pregabalin attenuated glutamate release in the medulla as well as these nociceptive effects reflected in increased electromyographic (EMG) activity induced by MO application to the tooth pulp. Male adult rats were anesthetized with isofluorane (1.0-1.2%), and jaw and tongue muscle EMG activities were recorded by needle electrodes inserted bilaterally into masseter and anterior digastric muscles and into the genioglossus muscle, and also the medullary release of glutamate was assessed by in vivo microdialysis. Pregabalin or vehicle control (isotonic saline) was administered 30 min before the pulpal application of MO or vehicle control (mineral oil). Application of mineral oil to the maxillary first molar tooth pulp produced no change in baseline EMG activity and glutamate release. However, application of MO to the pulp significantly increased both the medullary release of glutamate and EMG activity in the jaw and tongue muscles for several minutes. In contrast, pre-medication with pregabalin, but not vehicle control, significantly and dose-dependently attenuated the medullary glutamate release and EMG activity in these muscles after MO application to the tooth pulp (analysis of variance (ANOVA), p<0.05). These results suggest that pregabalin may attenuate the medullary release of glutamate and associated nociceptive sensorimotor responses in this acute inflammatory pulpal pain model, and that it may prove useful for the treatment of orofacial inflammatory pain states.


Assuntos
Analgésicos/farmacologia , Ácido Glutâmico/metabolismo , Bulbo/metabolismo , Odontalgia/tratamento farmacológico , Ácido gama-Aminobutírico/análogos & derivados , Animais , Polpa Dentária/efeitos dos fármacos , Modelos Animais de Doenças , Eletromiografia , Músculos Faciais/efeitos dos fármacos , Músculos Faciais/fisiologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Irritantes/toxicidade , Masculino , Bulbo/efeitos dos fármacos , Microdiálise , Mostardeira/toxicidade , Óleos de Plantas/toxicidade , Pregabalina , Ratos , Ratos Sprague-Dawley , Odontalgia/induzido quimicamente , Odontalgia/metabolismo , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa