Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Ecotoxicol Environ Saf ; 250: 114491, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603486

RESUMO

Many priority pollutants are concentrated in the environment due to human activity. Most are highly toxic to various organisms, including endocrine disruptors EDCs, aromatic polycyclic hydrocarbons PAHs, pesticides. While the effects of single and binary exposure have been widely explored, several pollutants can be simultaneously present at the same time in the environment, in in more or less polluted matrices. Effective pollution control requires the presence and sources of contamination to be identified. Previously we used Drosophila melanogaster to investigate metal pollution. Here, we re-used Drosophila to identify the biomarkers of pollution, and to determine if they can be used for specific types of pollution. Single and combined exposure of Bis(2-ethylhexyl) phthalate (DEHP), bisphenol A, nonylphenol, benzo(a)pyrene, and glyphosate was investigated. The impact of these pollutants on post-embryonic development and the expression pattern of 38 molecular targets were examined using qPCR. During single exposure, different profiles were observed at the molecular level. In complex mixtures, the expression profile resembled that of bisphenol A. In contrast, relatively specific gene expression profiles were obtained for the effects of each pollutant separately. While direct pollutant-gene profiling remains difficult in mixtures, molecular biology analyses enhance pollution monitoring, and should be incorporated in toxicological studies.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Desenvolvimento Embrionário , Expressão Gênica
2.
Cell Mol Life Sci ; 77(13): 2565-2577, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31564000

RESUMO

Odorant-binding proteins (OBPs) are small soluble proteins that are thought to transport hydrophobic odorants across the aqueous sensillar lymph to olfactory receptors. A recent study revealed that OBP28a, one of the most abundant Drosophila OBPs, is not required for odorant transport, but acts in buffering rapid odour variation in the odorant environment. To further unravel and decipher its functional role, we expressed recombinant OBP28a and characterized its binding specificity. Using a fluorescent binding assay, we found that OBP28a binds a restricted number of floral-like chemicals, including ß-ionone, with an affinity in the micromolar range. We solved the X-ray crystal structure of OBP28a, which showed extensive conformation changes upon ligand binding. Mutant flies genetically deleted for the OBP28a gene showed altered responses to ß-ionone at a given concentration range, supporting its essential role in the detection of specific compounds present in the natural environment of the fly.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Norisoprenoides , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Conformação Proteica , Receptores Odorantes/genética , Olfato
3.
Ecotoxicol Environ Saf ; 220: 112377, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052756

RESUMO

Heavy metals, like many other chemical elements, are naturally present in the environment; however, the concentrations of these metals in various environmental matrices have increased through their intensive use in many human activities (such as industry, mining and agriculture). Among the heavy metals, cadmium (Cd) and mercury (Hg) induce a wide variety of defects in animals. While the effects of these heavy metals have been widely documented, a single exposure paradigm is typically used. Few studies have focused on evaluating combined exposure to these metals. However, in the environment, animals are confronted with a plethora of substances simultaneously; thus, the presence and origin of such substances must be determined to reduce the sources of contamination. Using the model of the fruit fly Drosophila melanogaster, for which many tools are readily available, we investigated how different concentrations of Cd and Hg in single and combined exposures impact post-embryonic development. In parallel, we evaluated the extended expression pattern of 38 molecular targets used as potential biomarkers of exposure through qPCR. Our results showed that both metals caused developmental delays and mortality in dose-dependent responses. Both metals were able to deregulate genes involved in hormonal control, general stress, and oxidative stress. Importantly, we confirmed synergistic interactions between Cd and Hg. Our results indicate the importance of assessing several biomarkers and their kinetics in mixtures. Drosophila represents a useful model for monitoring the toxicity of substances in polluted environments.


Assuntos
Cádmio/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Sinergismo Farmacológico , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Mercúrio/toxicidade , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Exposição Ambiental/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Reação em Cadeia da Polimerase
4.
BMC Biol ; 18(1): 90, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32698880

RESUMO

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Assuntos
Adaptação Biológica , Evolução Biológica , Genoma de Inseto/fisiologia , Hemípteros/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Espécies Introduzidas , Vitis
6.
Chem Senses ; 42(4): 319-331, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334209

RESUMO

The detection of chemical signals is involved in a variety of crustacean behaviors, such as social interactions, search and evaluation of food and navigation in the environment. At hydrothermal vents, endemic shrimp may use the chemical signature of vent fluids to locate active edifices, however little is known on their sensory perception in these remote deep-sea habitats. Here, we present the first comparative description of the sensilla on the antennules and antennae of 4 hydrothermal vent shrimp (Rimicaris exoculata, Mirocaris fortunata, Chorocaris chacei, and Alvinocaris markensis) and of a closely related coastal shrimp (Palaemon elegans). These observations revealed no specific adaptation regarding the size or number of aesthetascs (specialized unimodal olfactory sensilla) between hydrothermal and coastal species. We also identified partial sequences of the ionotropic receptor IR25a, a co-receptor putatively involved in olfaction, in 3 coastal and 4 hydrothermal shrimp species, and showed that it is mainly expressed in the lateral flagella of the antennules that bear the unimodal chemosensilla aesthetascs.


Assuntos
Decápodes/fisiologia , Fontes Hidrotermais , Sensilas/fisiologia , Adaptação Fisiológica , Animais , Receptores Ionotrópicos de Glutamato/análise
7.
BMC Biol ; 10: 56, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22715942

RESUMO

BACKGROUND: Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. RESULTS: We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. CONCLUSIONS: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Carboxilesterase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Feromônios/farmacologia , Sensação/efeitos dos fármacos , Acetatos/farmacologia , Agressão/efeitos dos fármacos , Animais , Antenas de Artrópodes/enzimologia , Corte , Drosophila melanogaster/efeitos dos fármacos , Feminino , Alimentos , Cetonas/farmacologia , Masculino , Mutação/genética , Odorantes , Ácidos Oleicos/farmacologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Sensilas/efeitos dos fármacos , Sensilas/fisiologia , Olfato/efeitos dos fármacos
8.
Front Mol Neurosci ; 16: 1182361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645702

RESUMO

The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.

9.
FEBS Lett ; 597(24): 3038-3048, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933500

RESUMO

Glutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH…S hydrogen bonds and S…S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction.


Assuntos
Glutationa Transferase , Glutationa , Abelhas , Animais , Glutationa Transferase/metabolismo , Catálise , Glutationa/metabolismo , Enxofre
10.
Eur J Neurosci ; 36(5): 2588-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22748123

RESUMO

Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.


Assuntos
Proteínas de Insetos/metabolismo , Receptores de Feromônios/metabolismo , Potenciais de Ação , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Dados de Sequência Molecular , Neurônios Receptores Olfatórios/fisiologia , Receptores de Feromônios/genética , Receptores de Feromônios/fisiologia , Sensilas/fisiologia , Atrativos Sexuais/farmacologia , Spodoptera
11.
Naturwissenschaften ; 99(7): 537-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22729480

RESUMO

Mast syndrome is a complicated form of human hereditary spastic paraplegias, caused by a mutation in the gene acid cluster protein 33, which encodes a protein designated as "maspardin." Maspardin presents similarity to the α/ß-hydrolase superfamily, but might lack enzymatic activity and rather be involved in protein-protein interactions. Association with the vesicles of the endosomal network also suggested that maspardin may be involved in the sorting and/or trafficking of molecules in the endosomal pathway, a crucial process for maintenance of neuron health. Despite a high conservation in living organisms, studies of maspardin in other animal species than mammals were lacking. In the cotton armyworm Spodoptera littoralis, an insect pest model, analysis of an expressed sequence tag collection from antenna, the olfactory organ, has allowed identifying a maspardin homolog (SlMasp). We have investigated SlMasp tissue distribution and temporal expression by PCR and in situ hybridization techniques. Noteworthy, we found that maspardin was highly expressed in antennae and associated with the structures specialized in odorant detection. We have, in addition, identified maspardin sequences in numerous "nonmammalian" species and described here their phylogenetic analysis in the context of metazoan diversity. We observed a strong conservation of maspardin in metazoans, with surprisingly two independent losses of this gene in two relatively distant ecdysozoan taxa that include major model organisms, i.e., dipterans and nematodes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Filogenia , Spodoptera/enzimologia , Spodoptera/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/enzimologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Células Receptoras Sensoriais/enzimologia , Alinhamento de Sequência , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Spodoptera/classificação
12.
Insects ; 13(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886788

RESUMO

Glutathione transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of glutathione to various molecules. Among the 42 GSTs identified in Drosophila melanogaster, Delta and Epsilon are the largest classes, with 25 members. The Delta and Epsilon classes are involved in different functions, such as insecticide resistance and ecdysone biosynthesis. The insect GST number variability is due mainly to these classes. Thus, they are generally considered supports during the evolution for the adaptability of the insect species. To explore the link between Delta and Epsilon GST and their evolution, we analyzed the sequences using bioinformatic tools. Subgroups appear within the Delta and Epsilon GSTs with different levels of diversification. The diversification also appears in the sequences showing differences in the active site. Additionally, amino acids essential for structural stability or dimerization appear conserved in all GSTs. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the transcripts corresponding to these two classes are heterogeneously expressed within D. melanogaster. Some GSTs, such as GSTD1, are highly expressed in all tissues, suggesting their general function in detoxification. Conversely, some others, such as GSTD11 or GSTE4, are specifically expressed at a high level specifically in antennae, suggesting a potential role in olfaction.

13.
Insects ; 12(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208014

RESUMO

The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34246923

RESUMO

Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic analyses for each detoxification gene family. We found expansions of several gene sub-families in the genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the same genomic position and orientation suggesting recent successive duplications. These results highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in adaptation to plant secondary metabolites, and provide gene candidates for further functional analyses.


Assuntos
Afídeos , Vitis , Adaptação Fisiológica , Animais , Afídeos/genética , Perfilação da Expressão Gênica , Humanos , Filogenia
15.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
16.
Environ Sci Pollut Res Int ; 27(33): 41893-41901, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32696409

RESUMO

Effects of low concentrations of pesticides, with no or moderate mortality of targeted species, are poorly studied even though these low concentrations are common under natural conditions. Studying their effects is critical because they can induce positive hormetic responses, possibly leading to greater pest multiplication and promoting the evolution of pest resistance. Here, we investigated the responses of the pest moth Spodoptera littoralis to low concentrations of deltamethrin, and tested for variation in effects of the pesticide between developmental stages and sexes. Indeed, we show that a given concentration of deltamethrin has different effects between stages, and even between sexes. Two experimental concentrations led to very high mortality early in S. littoralis development (4th larval instar), but only to low mortality rates in adults. Moreover, our highest experimental concentration had only detrimental effects in adult females, but improved the reproductive success of adult males. Model projections showed that the lethality from treatments at the 4th larval instar was the predominant effect. Because of the high multiplication rate of S. littoralis, it was also found that treatments with very similar effects on larval mortality can lead to either population extinction or rapid pest resurgence.


Assuntos
Inseticidas , Mariposas , Piretrinas , Animais , Feminino , Larva , Masculino , Nitrilas , Spodoptera
17.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31383255

RESUMO

Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea.


Assuntos
Encéfalo/anatomia & histologia , Decápodes/anatomia & histologia , Animais , Organismos Aquáticos , Oceano Atlântico , Evolução Biológica , Fontes Hidrotermais
18.
Chemosphere ; 235: 616-625, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31276874

RESUMO

Endocrine-disrupting chemicals encompass a variety of chemicals that may interfere with the endocrine system and produce negative effects on organisms. Among them, bisphenol A is considered a major pollutant in numerous countries. The harmful effects of BPA on environmental and human health are intensely studied. However, the effects of BPA on terrestrial insects are still poorly investigated, despite that several plants can accumulate BPA in their tissues, leading to potential contamination of herbivorous insects. Here, we used the leafworm Spodoptera littoralis, a polyphagous species, to study BPA effects on post-embryonic development. We studied the effects of BPA ingestion at environmental doses (e.g., 0.01, 0.1, and 1 µg/g of BPA) and high doses (e.g., 25 µg/g) on larval weight and stage duration, pupal length and sex ratio. BPA effects were investigated in more detail during the last larval instar, a crucial period for preparing pupation and metamorphosis, which are under endocrine control. We monitored the haemolymph concentration of ecdysteroids, hormones controlling moult and metamorphosis, as well as the expression levels of several nuclear receptors involved in the ecdysteroid signalling pathway. Our integrative study showed that, upon exposure doses, BPA can induce various effects on the viability, developmental time, growth and sex ratio. These effects were correlated with a delay of the ecdysteroid peak during the last larval instar and a modification of expression of EcR, USP, E75AB, E75D and Br-c. We provide new evidence about the events that occur after BPA exposure in insect contaminated by food ingestion.


Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Fenóis/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Ecdisteroides , Disruptores Endócrinos/metabolismo , Poluentes Ambientais/metabolismo , Gossypium , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Pupa/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento
19.
Elife ; 82019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31818368

RESUMO

Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Receptores de Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Drosophila/genética , Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Insetos/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Masculino , Mariposas/genética , Receptores Odorantes , Receptores de Feromônios/classificação , Receptores de Feromônios/genética , Spodoptera/genética , Spodoptera/metabolismo , Transcriptoma , Xenopus/genética , Xenopus/metabolismo
20.
Front Physiol ; 9: 1283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319435

RESUMO

Glutathione-S-transferases (GSTs) are conjugating enzymes involved in the detoxification of a wide range of xenobiotic compounds. The expression of GSTs as well as their activities have been also highlighted in the olfactory organs of several species, including insects, where they could play a role in the signal termination and in odorant clearance. Using a transcriptomic approach, we identified 33 putative GSTs expressed in the antennae of the cotton leafworm Spodoptera littoralis. We established their expression patterns and revealed four olfactory-enriched genes in adults. In order to investigate the evolution of antennal GST repertoires in moths, we re-annotated antennal transcripts corresponding to GSTs in two moth and one coleopteran species. We performed a large phylogenetic analysis that revealed an unsuspected structural-and potentially functional-diversity of GSTs within the olfactory organ of insects. This led us to identify a conserved clade containing most of the already identified antennal-specific and antennal-enriched GSTs from moths. In addition, for all the sequences from this clade, we were able to identify a signal peptide, which is an unusual structural feature for GSTs. Taken together, these data highlight the diversity and evolution of GSTs in the olfactory organ of a pest species and more generally in the olfactory system of moths, and also the conservation of putative extracellular members across multiple insect orders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa