Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34982151

RESUMO

Endothelial cells (ECs) are heterogeneous across and within tissues, reflecting distinct, specialised functions. EC heterogeneity has been proposed to underpin EC plasticity independently from vessel microenvironments. However, heterogeneity driven by contact-dependent or short-range cell-cell crosstalk cannot be evaluated with single cell transcriptomic approaches, as spatial and contextual information is lost. Nonetheless, quantification of EC heterogeneity and understanding of its molecular drivers is key to developing novel therapeutics for cancer, cardiovascular diseases and for revascularisation in regenerative medicine. Here, we developed an EC profiling tool (ECPT) to examine individual cells within intact monolayers. We used ECPT to characterise different phenotypes in arterial, venous and microvascular EC populations. In line with other studies, we measured heterogeneity in terms of cell cycle, proliferation, and junction organisation. ECPT uncovered a previously under-appreciated single-cell heterogeneity in NOTCH activation. We correlated cell proliferation with different NOTCH activation states at the single-cell and population levels. The positional and relational information extracted with our novel approach is key to elucidating the molecular mechanisms underpinning EC heterogeneity.


Assuntos
Células Endoteliais , Transcriptoma , Ciclo Celular , Proliferação de Células/genética , Fenótipo , Transcriptoma/genética
2.
J Proteome Res ; 21(3): 702-712, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982937

RESUMO

Typical protocols to differentiate induced pluripotent stem cells (iPSCs) from hepatocyte-like cells (HLCs) imply complex strategies that include transfection with key hepatic transcription factors and the addition to culture media of nutrients, growth factors, and cytokines. A main constraint to evaluate the hepatic phenotype achieved arises from the way the grade of differentiation is determined. Currently, it relies on the assessment of the expression of a limited number of hepatic gene transcripts, less frequently by assessing certain hepatic metabolic functions, and rarely by the global metabolic performance of differentiated cells. We envisaged a new strategy to assess the extent of differentiation achieved, based on the analysis of the cellular metabolome along the differentiation process and its quantitative comparison with that of primary human hepatocytes (PHHs). To validate our approach, we examined the changes in the metabolome of three iPSC progenies (transfected with/without key transcription factors), cultured in three differentiation media, and compared them to PHHs. Results revealed consistent metabolome changes along differentiation and evidenced the factors that more strongly promote changes in the metabolome. The integrated dissimilarities between the PHHs and HLCs retrieved metabolomes were used as a numerical reference for quantifying the degree of iPSCs differentiation. This newly developed metabolome-analysis approach evidenced its utility in assisting us to select a cell's source, culture conditions, and differentiation media, to achieve better-differentiated HLCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Hepatócitos/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
3.
Lab Chip ; 23(4): 761-772, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722906

RESUMO

Creating vascularised cellular environments in vitro is a current challenge in tissue engineering and a bottleneck towards developing functional stem cell-derived microtissues for regenerative medicine and basic investigations. Here we have developed a new workflow to manufacture vasculature on chip (VoC) systems efficiently, quickly, and inexpensively. We have employed 3D printing for fast-prototyping of bespoke VoC and coupled them with a refined organotypic culture system (OVAA) to grow patent capillaries in vitro using tissue-specific endothelial and stromal cells. Furthermore, we have designed and implemented a pocket-size flow driver to establish physiologic perfusive flow throughout our VoC-OVAA with minimal medium use and waste. Using our platform, we have created vascularised microtissues and perfused them at physiologic flow rates for extended time (>2 weeks) observing flow-dependent vascular remodelling. Overall, we present for the first time a scalable and customisable system to grow vascularised and perfusable microtissues, a key initial step to grow mature and functional tissues in vitro. We envision that this technology will empower fast prototyping and validation of increasingly biomimetic in vitro systems, including interconnected multi-tissue systems.


Assuntos
Compostos Orgânicos Voláteis , Engenharia Tecidual , Perfusão , Dispositivos Lab-On-A-Chip
4.
Biomaterials ; 276: 121006, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304139

RESUMO

Chronic liver injury, as observed in non-alcoholic steatohepatitis (NASH), progressive fibrosis, and cirrhosis, remains poorly treatable. Steatohepatitis causes hepatocyte loss in part by a direct lipotoxic insult, which is amplified by derangements in the non-parenchymal cellular (NPC) interactive network wherein hepatocytes reside, including, hepatic stellate cells, liver sinusoidal endothelial cells and liver macrophages. To create an in vitro culture model encompassing all these cells, that allows studying liver steatosis, inflammation and fibrosis caused by NASH, we here developed a fully defined hydrogel microenvironment, termed hepatocyte maturation (HepMat) gel, that supports maturation and maintenance of pluripotent stem cell (PSC) derived hepatocyte- and NPC-like cells for at least one month. The HepMat-based co-culture system modeled key molecular and functional features of TGFß-induced liver fibrosis and fatty-acid induced inflammation and fibrosis better than monocultures of its constituent cell populations. The novel co-culture system should open new avenues for studying mechanisms underlying liver steatosis, inflammation and fibrosis as well as for assessing drugs counteracting these effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Células-Tronco Pluripotentes , Animais , Células Endoteliais , Fibrose , Hepatócitos/patologia , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Nat Commun ; 11(1): 1393, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170132

RESUMO

Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.


Assuntos
Aminoácidos/metabolismo , Carcinoma Hepatocelular/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Citocromo P-450 CYP3A , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito , Fator 3-gama Nuclear de Hepatócito , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio , Humanos , Fígado , Masculino , Engenharia Metabólica , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Células-Tronco Pluripotentes , Células-Tronco , Transcriptoma , Proteínas Supressoras de Tumor
6.
Rio de Janeiro; Contraponto;CORECON-RJ; 2000. 267 p.
Monografia em Português | SES-SP, SES SP - Acervo Instituto de Saúde | ID: biblio-1074829

RESUMO

Que potencialidades a modernidade ainda apresenta para fazer avançar o processo civilizatório? Quais as novas configurações do sistema dominante e que desafios elas trazem aos movimentos sociais? Que cenários alternativos se visualizam para a evolução do sistema mundial e qual o lugar da américa latina? Como se movem as relações de poder no vasto continente da eurásia? Quais as contradições mais importantes do novo regime de acumulação capitalista? Que alterações precisam sofrer as normas que regem as relações entre os países, diante de problemas globais, como o do meio ambiente? Quais as novas dimensões da questão nacional? É possível construir uma poderosa coalização contra-hegemônica de alcance mundial? O liberalismo é compatível com a valorização da diversidade e da pluralidade


Assuntos
Humanos , Masculino , Feminino , Civilização , Ciências Sociais , Democracia , Filosofia , Política
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa