Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570718

RESUMO

Color is a major quality trait of rosé wines due to their packaging in clear glass bottles. This color is due to the presence of phenolic pigments extracted from grapes to wines and products of reactions taking place during the wine-making process. This study focuses on changes occurring during the alcoholic fermentation of Syrah, Grenache and Cinsault musts, which were conducted at laboratory (250 mL) and pilot (100 L) scales. The color and phenolic composition of the musts and wines were analyzed using UV-visible spectrophotometry, and metabolomics fingerprints were acquired by ultra-high performance liquid chromatography-high-resolution mass spectrometry. Untargeted metabolomics data highlighted markers of fermentation stage (must or wine) and markers related to the grape variety (e.g., anthocyanins in Syrah, hydroxycinnamates and tryptophan derivatives in Grenache, norisoprenoids released during fermentation in Cinsault). Cinsault wines contained higher molecular weight compounds possibly resulting from the oxidation of phenolics, which may contribute to their high absorbance values.


Assuntos
Vitis , Vinho , Vinho/análise , Antocianinas/química , Fermentação , Cromatografia Líquida de Alta Pressão , Frutas/química , Cor , Vitis/química , Fenóis/química
2.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807423

RESUMO

Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC-ESI-TIMS-QTOF-MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (-)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with ß and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (-)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of ß-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products.


Assuntos
Produtos Biológicos , Catequina , Catequina/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Mobilidade Iônica , Polifenóis/análise , Espectrometria de Massas em Tandem
3.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209149

RESUMO

The color of rosé wines is extremely diverse and a key element in their marketing. It is due to the presence of anthocyanins and of additional pigments derived from them and from other wine constituents. To explore the pigment composition and determine its links with color, 268 commercial rosé wines were analysed. The concentration of 125 polyphenolic compounds was determined by a targeted metabolomics approach using ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode and the color characterised by spectrophotometry and CieLab parameters. Chemometrics analysis of the composition and color data showed that although color intensity is primarily determined by polyphenol extraction (especially anthocyanins and flavanols) from the grapes, different color styles correspond to different pigment compositions. The salmon shade of light rosé wines is mostly due to pyranoanthocyanin pigments, resulting from reactions of anthocyanins with phenolic acids and pyruvic acid, a yeast metabolite. Redness of intermediate color wines is related to anthocyanins and carboxypoyranoanthocyanins and that of dark rosé wines to products of anthocyanin reactions with flavanols while yellowness of these wines is associated to oxidation.


Assuntos
Cor , Metabolômica , Polifenóis/química , Vinho/análise , Antocianinas/química , Quimiometria/métodos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metabolômica/métodos , Vitis/química
4.
Rapid Commun Mass Spectrom ; 35(6): e9036, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33386030

RESUMO

RATIONALE: The calculation of centroids from profile mass spectra is one of the very first steps in the processing of mass spectra. The output is a signal and a m/z value. We focus on the accuracy of the prediction of the centroids' m/z values. METHODS: A calculation based on the Savizky-Golay algorithm was evaluated on an Orbitrap mass spectrum. Reference m/z values were identified manually. Experimental centroids were extracted (1) automatically using our algorithm or the MSconvert algorithm and (2) manually using the Xcalibur software from Thermo. The three series of experimental m/z values were compared with the reference m/z values. RESULTS: Our algorithm improved the determination of the m/z values compared with MSconvert. However, no improvement was observed over Xcalibur. CONCLUSIONS: Our algorithm improved the automatic estimation of m/z values in the profile-to-centroid calculation. This is of importance when the goal is to determine raw compositions from the experimental m/z values. Nevertheless, the algorithms led to almost the same m/z values on a higher resolution mass spectrum.

5.
Anal Bioanal Chem ; 410(15): 3483-3490, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29256073

RESUMO

A UHPLC-MS/MS method was developed for the quantification of the main compounds involved in oxidation reactions occurring in white musts and wines such as hydroxycinnamic acids, their glutathione and cysteinylglycine adducts (GRP, GRP2, 5-(S-glutathionyl)-trans-caftaric acid, 2-(S-cysteinylglycyl)-trans-caftaric acid, and 2-(S-glutathionyl)-trans-caffeic acid), and reduced and oxidized glutathione (GSH, GSSG) in wine. Since oxidation is the main concern in white wine-making, directly affecting its quality, the developed method was then applied in a series of white wines made with different pre-fermentation treatments to limit oxidation at must stage. The glucose esters and/or glucosides of hydroxycinnamic acids were quantified as glucogallin equivalent. The developed method led to an overall improvement in the limits of detection (LODs) and quantification (LOQs) for all the compounds studied in comparison to other methods such as high-performance liquid chromatography with fluorescence detection (HPLC-FLD) or diode array UV detection (HPLC-DAD). LOD values ranged from 0.0002 to 0.0140 mg/L and LOQs from 0.0005 to 0.0470 mg/L. The recoveries ranged between 80 and 110% in wines, and the relative standard deviation (RSD) for precision intra- and inter-day was below 15%. The accuracy and intra- and inter-day precision met the acceptance criteria of the AOAC international norms. As far as we know, this study is the first report of quantification of GRP, 2-(S-cysteinylglycyl)-trans-caftaric acid, and 2-(S-glutathionyl)-trans-caffeic acid using these non-commercially available compounds as external standards. Those compounds represent a significant proportion of hydroxycinnamic acid derivatives in wines. The methodology described is suitable for the analysis of hydroxycinnamic derivatives in wines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Cumáricos/análise , Espectrometria de Massas em Tandem/métodos , Vinho/análise , Dipeptídeos/análise , Glutationa/análise , Limite de Detecção , Oxirredução , Fenóis/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
J Exp Bot ; 67(11): 3537-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27241494

RESUMO

In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, ß-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites.


Assuntos
Oxirredutases do Álcool/genética , Ácido Gálico/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Vitis/enzimologia , Vitis/metabolismo
7.
J Nat Prod ; 79(9): 2211-22, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27616743

RESUMO

Grape polyphenols, especially hydroxycinnamic acids such as caftaric and caffeic acid, are prone to enzymatic oxidation reactions during the winemaking process, forming o-quinones and leading to color darkening. Glutathione is capable of trapping these o-quinones and thus limiting juice browning. In this study, the addition of glutathione or cysteinylglycine onto caftaric or caffeic acid o-quinones formed by polyphenoloxidase-catalyzed reactions was investigated by UPLC-DAD-ESIMS and NMR data analyses. Complete identification of adducts has been achieved via NMR data. The results confirmed that the favored reaction is the substitution of the sulfanyl group of cysteine at C-2 of the aromatic ring. Several minor isomers, namely, the cis-isomer of the 2-S adduct and trans-isomers of the 5-S and 6-S adducts, and the 2,5-di-S-glutathionyl adducts were also identified and quantified by qNMR. With the exception of 2-(S-glutathionyl)- and 2,5-di(S-glutathionyl)-trans-caftaric acid, these products had never been formally identified. In particular, the 5-S and 6-S derivatives are reported here for the first time. The first formal identification of 2-S cis-derivatives is also provided. Moreover, NMR and UPLC-DAD-ESIMS analysis showed that signature UV and MS spectra can serve as markers of the conformation and substitution position in the aromatic ring for each of the isomers.


Assuntos
Ácidos Cumáricos/química , Ácidos Cumáricos/síntese química , Dipeptídeos/química , Glutationa/química , Vitis/química , Ácidos Cafeicos/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Quinonas/química , Estereoisomerismo
8.
Int J Mol Sci ; 17(11)2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27827954

RESUMO

The physicochemical properties of the wine pigments catechyl-pyranomalvidin-3-O-glucoside (PA1) and guaiacyl-pyranomalvidin-3-O-glucoside (PA2) are extensively revisited using ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and quantum chemistry density functional theory (DFT) calculations. In mildly acidic aqueous solution, each cationic pigment undergoes regioselective deprotonation to form a single neutral quinonoid base and water addition appears negligible. Above pH = 4, both PA1 and PA2 become prone to aggregation, which is manifested by the slow build-up of broad absorption bands at longer wavelengths (λ ≥ 600 nm), followed in the case of PA2 by precipitation. Some phenolic copigments are able to inhibit aggregation of pyranoanthocyanins (PAs), although at large copigment/PA molar ratios. Thus, chlorogenic acid can dissociate PA1 aggregates while catechin is inactive. With PA2, both chlorogenic acid and catechin are able to prevent precipitation but not self-association. Calculations confirmed that the noncovalent dimerization of PAs is stronger with the neutral base than with the cation and also stronger than π-π stacking of PAs to chlorogenic acid (copigmentation). For each type of complex, the most stable conformation could be obtained. Finally, PA1 can also bind hard metal ions such as Al3+ and Fe3+ and the corresponding chelates are less prone to self-association.


Assuntos
Antocianinas/química , Quelantes de Ferro/química , Pigmentos Biológicos/química , Prótons , Vinho/análise , Alumínio/química , Catequina/química , Precipitação Química , Ácido Clorogênico/química , Cor , Dimerização , Concentração de Íons de Hidrogênio , Ferro/química , Conformação Molecular , Teoria Quântica , Estereoisomerismo , Termodinâmica
9.
Molecules ; 21(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775674

RESUMO

A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Taninos/análise , Vitis/química , Catálise , Ensaios de Triagem em Larga Escala , Metabolômica/métodos , Estrutura Molecular , Polimerização , Proantocianidinas/isolamento & purificação , Taninos/química , Taninos/isolamento & purificação , Vitis/classificação
10.
New Phytol ; 208(3): 695-707, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26053460

RESUMO

Phenolic compounds are secondary metabolites involved in several plant growth and development processes, including resistance to biotic and abiotic stresses. The biosynthetic pathways leading to the vast diversity of plant phenolic products often include an acylation step, with phenolic compounds being the donor or acceptor molecules. To date, two acyltransferase families using phenolic compounds as acceptor or donor molecules have been described, with each using a different 'energy-rich' acyl donor. BAHD-acyltransferases, named after the first four biochemically characterized enzymes of the group, use acyl-CoA thioesters as donor molecules, whereas SCPL (Serine CarboxyPeptidase Like)-acyltransferases use 1-O-ß-glucose esters. Here, common and divergent specifications found in the literature for both enzyme families were analyzed to answer the following questions. Are both acyltransferases involved in the synthesis of the same molecule (or same group of molecules)? Are both acyltransferases recruited in the same plant? How does the subcellular localization of these enzymes impact metabolite trafficking in plant cells?


Assuntos
Aciltransferases/metabolismo , Fenóis/metabolismo , Plantas/enzimologia , Acilação , Aciltransferases/genética , Família Multigênica , Plantas/genética , Metabolismo Secundário
11.
Molecules ; 20(5): 7890-914, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25942371

RESUMO

A rapid, sensitive and selective analysis method using Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS) has been developed for the quantification of polyphenols in rosé wines. The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, the present method allows the selective quantification of up to 152 phenolic and two additional non-phenolic wine compounds in 30 min without sample purification or pre-concentration, even at low concentration levels. This method was repeatably applied to a set of 12 rosé wines and thus proved to be suitable for high-throughput and large-scale metabolomics studies.


Assuntos
Polifenóis/química , Rosa/química , Vinho/análise , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos
12.
New Phytol ; 201(3): 795-809, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24147899

RESUMO

Flavonoids are secondary metabolites with multiple functions. In grape (Vitis vinifera), the most abundant flavonoids are proanthocyanidins (PAs), major quality determinants for fruit and wine. However, knowledge about the regulation of PA composition is sparse. Thus, we aimed to identify novel genomic regions involved in this mechanism. Expression quantitative trait locus (eQTL) mapping was performed on the transcript abundance of five downstream PA synthesis genes (dihydroflavonol reductase (VvDFR), leucoanthocyanidin dioxygenase (VvLDOX), leucoanthocyanidin reductase (VvLAR1), VvLAR2 and anthocyanidin reductase (VvANR)) measured by real-time quantitative PCR on a pseudo F1 population in two growing seasons. Twenty-one eQTLs were identified; 17 of them did not overlap with known candidate transcription factors or cis-regulatory sequences. These novel loci and the presence of digenic epistasis support the previous hypothesis of a polygenic regulatory mechanism for PA biosynthesis. In a genomic region co-locating eQTLs for VvDFR, VvLDOX and VvLAR1, gene annotation and a transcriptomic survey suggested that VvMYBC2-L1, a gene coding for an R2R3-MYB protein, is involved in regulating PA synthesis. Phylogenetic analysis showed its high similarity to characterized negative MYB factors. Its spatiotemporal expression profile in grape coincided with PA synthesis. Its functional characterization via overexpression in grapevine hairy roots demonstrated its ability to reduce the amount of PA and to down-regulate expression of PA genes.


Assuntos
Mapeamento Cromossômico , Frutas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Locos de Características Quantitativas/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Genótipo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proantocianidinas/biossíntese , Proantocianidinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Sci Food Agric ; 94(6): 1084-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037711

RESUMO

BACKGROUND: Date fruit seeds have been demonstrated to possess high antioxidant activities due to their high content of flavonoids and phenolic compounds. The objective of this work was to identify and quantify the phenolic composition of date seeds. METHODS: Two UPLC-DAD-ESI-MS analyses were performed on the seed of the Khalas variety as follows: (1) an analysis of simple phenolic compounds [phenolic acids, hydroxycinnamic acids, flavonols, flavones, flavan-3-ols (monomers, dimers and trimers)]; and (2) an analysis of all flavan-3-ols (monomers, and proanthocyanidin oligomers and polymers) after depolymerisation. RESULTS: The amount of total phenolic compounds before depolymerisation was found to be 2.194 ± 0.040 g kg(-1) date seed. The analysis of flavan-3-ol monomers and constitutive units of proanthocyanidins after depolymerisation revealed 50.180 ± 1.360 g kg(-1) flavan-3-ols with 46.800 ± 1.012 g kg(-1) epicatechin and 3.380 ± 0.349 g kg(-1) catechin. CONCLUSION: The results indicate that date seeds are a very rich source of bioactive compounds, thus constituting strong candidates for functional food additives and nutraceuticals.


Assuntos
Arecaceae/química , Catequina/análise , Flavonoides/análise , Fenóis/análise , Proantocianidinas/análise , Sementes/química , Cromatografia Líquida de Alta Pressão/métodos , Dieta , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
New Phytol ; 199(4): 1012-1021, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23692063

RESUMO

Nitrogen-fixing root nodulation is confined to four plant orders, including > 14,000 Leguminosae, one nonlegume genus Parasponia and c. 200 actinorhizal species that form symbioses with rhizobia and Frankia bacterial species, respectively. Flavonoids have been identified as plant signals and developmental regulators for nodulation in legumes and have long been hypothesized to play a critical role during actinorhizal nodulation. However, direct evidence of their involvement in actinorhizal symbiosis is lacking. Here, we used RNA interference to silence chalcone synthase, which is involved in the first committed step of the flavonoid biosynthetic pathway, in the actinorhizal tropical tree Casuarina glauca. Transformed flavonoid-deficient hairy roots were generated and used to study flavonoid accumulation and further nodulation. Knockdown of chalcone synthase expression reduced the level of specific flavonoids and resulted in severely impaired nodulation. Nodule formation was rescued by supplementing the plants with naringenin, which is an upstream intermediate in flavonoid biosynthesis. Our results provide, for the first time, direct evidence of an important role for flavonoids during the early stages of actinorhizal nodulation.


Assuntos
Aciltransferases/genética , Fagaceae/enzimologia , Fagaceae/genética , Flavonoides/metabolismo , Inativação Gênica , Nodulação/genética , Aciltransferases/metabolismo , Cromatografia Líquida de Alta Pressão , Flavanonas/metabolismo , Técnicas de Silenciamento de Genes , Genes de Plantas , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
Langmuir ; 29(6): 1926-37, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23297743

RESUMO

In the mouth, proline-rich proteins (PRP), which are major components of stimulated saliva, interact with tannins contained in food. We report in vitro interactions of the tannin epigallocatechin gallate (EgCG), with a basic salivary PRP, IB5, studied through electrospray ionization mass spectrometry (ESI-MS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS). In dilute protein (IB5) solutions of low ionic strength (1 mM), the proteins repel each other, and the tannins bind to nonaggregated proteins. ESI-MS experiments determine the populations of nonaggregated proteins that have bound various numbers of tannin molecules. These populations match approximately the Poisson distribution for binding to n = 8 sites on the protein. MS/MS experiments confirm that complexes containing n = 1 to 8 EgCG molecules are dissociated with the same energy. Assuming that the 8 sites are equivalent, we calculate a binding isotherm, with a binding free energy Δµ = 7.26RT(a) (K(d) = 706 µM). In protein solutions that are more concentrated (0.21 mM) and at higher ionic strength (50 mM, pH 5.5), the tannins can bridge the proteins together. DLS experiments measure the number of proteins per aggregate. This number rises rapidly when the EgCG concentration exceeds a threshold (0.2 mM EgCG for 0.21 mM of IB5). SAXS experiments indicate that the aggregates have a core-corona structure. The core contains proteins that have bound at least 3 tannins and the corona has proteins with fewer bound tannins. These aggregates coexist with nonaggregated proteins. Increasing the tannin concentration beyond the threshold causes the transfer of proteins to the aggregates and a fast rise of the number of proteins per aggregate. A poisoned growth model explains this fast rise. Very large cationic aggregates, containing up to 10,000 proteins, are formed at tannin concentrations (2 mM) slightly above the aggregation threshold (0.2 mM).


Assuntos
Catequina/análogos & derivados , Multimerização Proteica/efeitos dos fármacos , Proteínas Salivares Ricas em Prolina/química , Sequência de Aminoácidos , Sítios de Ligação , Catequina/metabolismo , Catequina/farmacologia , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas Salivares Ricas em Prolina/metabolismo
16.
Ann Bot ; 112(6): 1003-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026439

RESUMO

BACKGROUND AND AIMS: Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. METHODS: Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. KEY RESULTS AND CONCLUSIONS: The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.


Assuntos
Organelas/ultraestrutura , Proantocianidinas/metabolismo , Traqueófitas/metabolismo , Animais , Catequina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clorofila/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cromatografia Líquida de Alta Pressão , Ebenaceae/química , Ebenaceae/metabolismo , Ebenaceae/ultraestrutura , Frutas/química , Frutas/metabolismo , Frutas/ultraestrutura , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Ginkgo biloba/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Organelas/química , Organelas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Polimerização , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Traqueófitas/química , Traqueófitas/ultraestrutura , Vacúolos/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vitis/química , Vitis/metabolismo , Vitis/ultraestrutura
17.
Eur J Nutr ; 52(2): 833-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22699306

RESUMO

PURPOSE: Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. METHODS: Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. RESULTS: Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. CONCLUSIONS: Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.


Assuntos
Colo/metabolismo , Modelos Biológicos , Preparações de Plantas , Vitis/química , Colo/microbiologia , Digestão , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxibenzoatos/análise , Metaboloma , Metagenoma , Polifenóis/análise , Proantocianidinas/análise , Vinho/análise
18.
Phytochem Anal ; 24(2): 162-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22930658

RESUMO

INTRODUCTION: Eucalyptus species are widely cultivated in Mediterranean regions. Moreover, plants of this family have been utilized for medicinal purposes. A number of studies have been devoted to the identification of eucalypt phenolics, all of them have focused on specific families of compounds, and no exhaustive profiling has been reported in leaves of this plant. OBJECTIVE: To develop methods that allows the identification and quantification of different classes of phenolics in Eucalyptus globulus leaf. METHODOLOGY: Acetonic extract was fractionated by chromatography on a Sephadex LH-20 column using consecutive elution with ethanol, methanol and aqueous acetone (60%). High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI/MS) were applied to determine the structure of different compounds. Quantities were evaluated from peak areas in the HPLC profile, using external calibration curves. RESULTS: Fractionation of acetonic extract yielded three fractions: F1, F2 and F3. In total 39 phenolic compounds are detected. Among them: 16 hydrolyzable tannins, 3 terpenyl derivatives, 12 ellagic acid derivatives, 5 flavonols, 2 hydroxybenzoic acids and 1 formylated phloroglucinol. 26 compounds described in this study have not previously detected in leaves of this plant and this is the first report of quercetin 3-O-ß-galactoside-6"-O-gallate and cypellogin A and B, in E. globulus plant. Quantitatively, ellagic acid derivatives and sideroxylonal A or B are largely predominant. CONCLUSION: Fractionation of crude extract by chromatography on Sephadex LH-20 was efficient to separate different molecular weight compounds. HPLC-DAD-ESI/MS enabled detection of gallotannin, ellagitannin and flavonol derivatives, in leaves of E. globulus.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eucalyptus/química , Fenóis/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Dextranos , Estrutura Molecular , Fenóis/química , Reprodutibilidade dos Testes
19.
Antioxidants (Basel) ; 12(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760029

RESUMO

In sub-Saharan Africa, chronic malnutrition is often associated with intestinal inflammation and oxidative stress. African green leafy vegetables (GLVs), commonly consumed by these populations and rich in bioactive compounds, may improve the antioxidant status. The aim of this study was to measure the antioxidant capacity using complementary assays (DPPH, FRAP, ABTS, ORAC and NO scavenging) in polar and non-polar leaf extracts of four African GLVs, cassava (Manihot esculenta), roselle (Hibiscus sabdariffa), jute mallow (Corchorus olitorius), and amaranth (Amaranthus spp.), with spinach (Spinacia oleracea) chosen as a reference. Their antioxidant capacity was correlated with their total polyphenol (TPC), flavonoid (TFC), condensed tannin, lutein, and ß-carotene contents. Identification of phenolic compounds by UHPLC-DAD-MS/MS revealed the presence of three main classes of compound: flavonols, flavones, and hydroxycinnamic acids. Cassava and roselle leaves presented significantly higher TPC and TFC than amaranth, jute mallow, and spinach. They also exhibited the highest antioxidant capacity, even higher than that of spinach, which is known for its important antioxidant effect. The antioxidant capacity was 2 to 18 times higher in polar than non-polar extracts, and was more strongly correlated with TPC and TFC (R > 0.8) than with ß-carotene and lutein contents. These findings provide new data especially for cassava and roselle leaves, for which studies are scarce, suggesting an appreciable antioxidant capacity compared with other leafy vegetables.

20.
Food Chem ; 403: 134396, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358071

RESUMO

Rosé wines show large color diversity, due to different phenolic pigment compositions. However, the mechanisms responsible for such diversity are poorly understood. The present work aimed at investigating the impact of fermentation on the color and composition of rosé wines made from Grenache, Cinsault, and Syrah grapes. Targeted MS analysis showed large varietal differences in must and wine compositions, with higher concentrations of anthocyanins and flavanols in Syrah. UV-visible spectrophotometry and size exclusion chromatography data indicated that Grenache and Cinsault musts contained oligomeric pigments derived from hydroxycinnamic acids and flavanols which were mostly lost during fermentation due to adsorption on lees. Syrah must color was mainly due to anthocyanins which were partly converted to derived pigments through reactions with yeast metabolites with limited color drop during fermentation. This work highlighted the impact of must composition, reflecting varietal characteristics, on changes occurring during fermentation and consequently wine color.


Assuntos
Vitis , Vinho , Vinho/análise , Polifenóis/análise , Antocianinas/análise , Fermentação , Cor , Vitis/química , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa