Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 8(8): e2301356, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38195885

RESUMO

The ability to perform both electrochemical and structural/elemental characterization in the same experiment and at the nanoscale allows to directly link electrochemical performance to the material properties and their evolution over time and operating conditions. Such experiments can be important for the further development of solid oxide cells, solid-state batteries, thermal electrical devices, and other solid-state electrochemical devices. The experimental requirements for conducting solid-state electrochemical TEM experiments in general, including sample preparation, electrochemical measurements, failure factors, and possibilities for optimization, are presented and discussed. Particularly, the methodology of performing reliable electrochemical impedance spectroscopy measurements in reactive gases and at elevated temperatures for both single materials and solid oxide cells is described. The presented results include impedance measurements of electronic conductors, an ionic conductor, and a mixed ionic and electronic conductor, all materials typically applied in solid oxide fuel and electrolysis cells. It is shown that how TEM and impedance spectroscopy can be synergically integrated to measure the transport and surface exchange properties of materials with nanoscale dimensions and to visualize their structural and elemental evolution via TEM/STEM imaging and spectroscopy.

2.
Small Methods ; 7(7): e2201713, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035947

RESUMO

The concept of combining electrical impedance spectroscopy (EIS) with environmental transmission electron microscopy (ETEM) is demonstrated by testing a specially designed micro gadolinia-doped ceria (CGO) sample in reactive gasses (O2 and H2 /H2 O), at elevated temperatures (room temperature-800 °C) and with applied electrical potentials. The EIS-TEM method provides structural and compositional information with direct correlation to the electrochemical performance. It is demonstrated that reliable EIS measurements can be achieved in the TEM for a sample with nanoscale dimensions. Specifically, the ionic and electronic conductivity, the surface exchange resistivity, and the volume-specific chemical capacitance are in good agreement with results from more standardized electrochemical tests on macroscopic samples. CGO is chosen as a test material due to its relevance for solid oxide electrochemical reactions where its electrochemical performance depends on temperature and gas environment. As expected, the results show increased conductivity and lower surface exchange resistance in H2 /H2 O gas mixtures where the oxygen partial pressure is low compared to experiments in pure O2 . The developed EIS-TEM platform is an important tool in promoting the understanding of nanoscale processes for green energy technologies, e.g., solid oxide electrolysis/fuel cells, batteries, thermoelectric devices, etc.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa