Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Cancer Cell Int ; 21(1): 317, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162394

RESUMO

Circular RNAs (circRNAs) are RNAs that have an important role in various pathological processes, including cancer. After the usage of high-throughput RNA sequencing, many circRNAs were found to be differentially expressed in various cancer cell lines and regulate cell signaling pathways by modulating particular gene expressions. Understanding their role in these pathways and what cancers they are found in can set the stage for identifying diagnostic and prognostic biomarkers and therapeutic targets of cancer. This paper will discuss which circRNAs are found in different cancers and what mechanisms they use to upregulate or downregulate certain cellular components.

3.
Mol Cell ; 48(5): 771-84, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23123196

RESUMO

Many types of human tumor cells have overexpressed pyruvate kinase M2 (PKM2). However, the mechanism underlying this increased PKM2 expression remains to be defined. We demonstrate here that EGFR activation induces PLCγ1-dependent PKCε monoubiquitylation at Lys321 mediated by RINCK1 ubiquitin ligase. Monoubiquitylated PKCε interacts with a ubiquitin-binding domain in NEMO zinc finger and recruits the cytosolic IKK complex to the plasma membrane, where PKCε phosphorylates IKKß at Ser177 and activates IKKß. Activated RelA interacts with HIF1α, which is required for RelA to bind the PKM promoter. PKCε- and NF-κB-dependent PKM2 upregulation is required for EGFR-promoted glycolysis and tumorigenesis. In addition, PKM2 expression correlates with EGFR and IKKß activity in human glioblastoma specimens and with grade of glioma malignancy. These findings highlight the distinct regulation of NF-κB by EGF, in contrast to TNF-α, and the importance of the metabolic cooperation between the EGFR and NF-κB pathways in PKM2 upregulation and tumorigenesis.


Assuntos
Neoplasias Encefálicas/enzimologia , Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/enzimologia , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C-épsilon/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Glioblastoma/genética , Glioblastoma/patologia , Glucose/metabolismo , Glicólise , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quinase I-kappa B/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Mutagênese Sítio-Dirigida , Mutação , NF-kappa B/genética , Gradação de Tumores , Transplante de Neoplasias , Fosfolipase C gama/metabolismo , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Proteína Quinase C-épsilon/genética , Interferência de RNA , Serina , Transdução de Sinais , Hormônios Tireóideos/genética , Fator de Transcrição RelA/metabolismo , Transfecção , Ubiquitinação , Regulação para Cima , Proteínas de Ligação a Hormônio da Tireoide
4.
Gastroenterology ; 155(1): 210-223.e3, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604293

RESUMO

BACKGROUND & AIMS: Little is known about how the immune system affects stem cell features of pancreatic cancer cells. Immune cells that produce interleukin 17A (IL17A) in the chronically inflamed pancreas (chronic pancreatitis) contribute to pancreatic interepithelial neoplasia (PanIN) initiation and progression. We investigated the effects that IL17A signaling exerts on pancreatic cancer progenitor cells and the clinical relevance of this phenomena. METHODS: We performed studies with Mist1Cre;LSLKras;Rosa26mTmG (KCiMist;G) and Kras(G12D);Trp53(R172H);Pdx1-Cre (KPC) mice (which upon tamoxifen induction spontaneously develop PanINs) and control littermates. Some mice were injected with neutralizing antibodies against IL17A or control antibody. Pancreata were collected, PanIN epithelial cells were isolated by flow cytometry based on lineage tracing, and gene expression profiles were compared. We collected cells from pancreatic tumors of KPC mice, incubated them with IL17 or control media, measured expression of genes regulated by IL17 signaling, injected the cancer cells into immune competent mice, and measured tumor growth. IL17A was overexpressed in pancreata of KCiMist mice from an adenoviral vector. Pancreata were collected from all mice and analyzed by histology and immunohistochemistry. Levels of DCLK1 and other proteins were knocked down in KPC pancreatic cancer cells using small interfering or short hairpin RNAs; cells were analyzed by immunoblotting. We obtained 65 pancreatic tumor specimens from patients, analyzed protein levels by immunohistochemistry, and compared results with patient survival times. We also analyzed gene expression levels and patient outcome using The Cancer Genome Atlas database. RESULTS: PanIN cells from KCiMist;G mice had a gene expression pattern associated with embryonic stem cells. Mice given injections of IL17-neutralizing antibodies, or with immune cells that did not secrete IL17, lost this expression pattern and had significantly decreased expression of DCLK1 and POU2F3, which regulate tuft cell development. KCiMist mice that overexpressed IL17 formed more PanINs, with more DCLK1-positive cells, than control mice. Pancreatic tumor cells from KPC mice and human Capan-2 cells exposed to IL17A had increased activation of NF-κB and mitogen-activated protein kinase signaling and increased expression of DCLK1 and ALDH1A1 (a marker of embryonic stem cells) compared with cells in control media. These cells also formed tumors faster that cells not exposed to IL17 when they were injected into immunocompetent mice. KPC cells with knockdown of DCLK1 expressed lower levels of ALDH1A1 after incubation with IL17 than cells without knockdown. Expression of the IL17 receptor C was higher in DCLK1-positive PanIN cells from mice compared with DCLK1-negative PanIN cells. In human pancreatic tumor tissues, high levels of DCLK1 associated with a shorter median survival time of patients (17.7 months, compared with 26.6 months of patients whose tumors had low levels of DCLK1). Tumor levels of POU2F3 and LAMC2 were also associated with patient survival time. CONCLUSIONS: In studies of mouse and human pancreatic tumors and precursors, we found that immune cell-derived IL17 regulated development of tuft cells and stem cell features of pancreatic cancer cells via increased expression of DCLK1, POU2F3, ALDH1A1, and IL17RC. Strategies to disrupt this pathway might be developed to prevent pancreatic tumor growth and progression.


Assuntos
Adenocarcinoma in Situ/imunologia , Carcinoma Ductal Pancreático/imunologia , Interleucina-17/imunologia , Células-Tronco Neoplásicas/imunologia , Neoplasias Pancreáticas/imunologia , Adenocarcinoma in Situ/genética , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Anticorpos Neutralizantes/farmacologia , Carcinoma Ductal Pancreático/genética , Bases de Dados Factuais , Progressão da Doença , Quinases Semelhantes a Duplacortina , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição de Octâmero/genética , Neoplasias Pancreáticas/genética , Pancreatite Crônica/genética , Pancreatite Crônica/imunologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Interleucina/genética , Retinal Desidrogenase
5.
Drug Resist Updat ; 33-35: 36-42, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29145973

RESUMO

Cellular drug resistance remains the main obstacle to the clinical efficacy of cancer chemotherapy. Alterations in key pathways regulating cell cycle checkpoints, apoptosis and Epithelial to Mesenchymal Transition (EMT), such as the Mitogen-activated protein kinase (MAPK) pathway, appear to be closely associated to cancer chemoresistance. Transforming growth factor-ß (TGF-ß)- activated kinase 1 (TAK1, also known as MAP3K7) is a serine/threonine kinase in the mitogen-activated protein kinase (MAP3K) family. It represents the cellular hub to which IL1, TGF-ß and Wnt signaling pathways converge. By regulating the phosphorylation status and activities of transcription factors including Activated Protein-1 (AP-1) and nuclear factor κ-B (NF-κB), TAK1 mediates inflammatory and pro-survival responses. The interest towards the therapeutic targeting of TAK1 is due to its identification as one of the main mediators of both chemoresistance and EMT in several types of tumors, and as the possible target for a subset of treatment-refractory colon cancers exhibiting mutated KRAS or activated WNT pathways. For these reasons, many efforts have been made to design inhibitors of TAK1 kinase activity, which could be used to reverse TAK1-mediated chemoresistance. The activity of these inhibitors, in combination with the most commonly used chemotherapeutic drugs, has been tested in preclinical studies, proving the efficacy of TAK1 inhibition in reducing tumor growth and survival following chemotherapy administration. In the first part of this review, we describe the mechanisms underlying TAK1 regulation such as phosphorylation, ubiquitination and targeting by microRNAs. We then focus on the development of therapeutic small molecule inhibitors of TAK1 kinase activity, as well as preclinical studies supporting the role of TAK1 as a potential target for enhancing the response of tumors to anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/metabolismo , Terapia de Alvo Molecular/métodos , NF-kappa B/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/metabolismo , Ubiquitinação
6.
J Pineal Res ; 60(1): 27-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26445000

RESUMO

Constitutive activation and gemcitabine induction of nuclear factor-κB (NF-κB) contribute to the aggressive behavior and chemotherapeutic resistance of pancreatic ductal adenocarcinoma (PDAC). Thus, targeting the NF-κB pathway has proven an insurmountable challenge for PDAC therapy. In this study, we investigated whether the inhibition of NF-κB signaling pathway by melatonin might lead to tumor suppression and overcome gemcitabine resistance in pancreatic tumors. Our results showed that melatonin inhibited activities of NF-κB by suppressing IκBα phosphorylation and decreased the expression of NF-κB response genes in MiaPaCa-2, AsPc-1, Panc-28 cells and gemcitabine resistance MiaPaCa-2/GR cells. Moreover, melatonin not only inhibited cell proliferation and invasion in a receptor-independent manner, but also enhanced gemcitabine cytotoxicity at pharmacologic concentrations in these PDAC cells. In vivo, the mice treated with both agents experienced a larger reduction in tumor burden than the single drug-treated groups in an orthotopic xenograft mouse model. Taken together, these results indicate that melatonin inhibits proliferation and invasion of PDAC cells and overcomes gemcitabine resistance of pancreatic tumors through NF-κB inhibition. Our findings therefore provide novel preclinical knowledge about melatonin inhibition of NF-κB in PDAC and suggest that melatonin should be investigated clinically, alone or in combination with gemcitabine for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melatonina/farmacologia , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
Cancer Cell ; 12(1): 52-65, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17613436

RESUMO

Pancreatic cancer is an aggressive malignancy with morbidity rates almost equal to mortality rates because of the current lack of effective treatment options. Here, we describe a targeted approach to treating pancreatic cancer with effective therapeutic efficacy and safety in noninvasive imaging models. We developed a versatile expression vector "VISA" (VP16-GAL4-WPRE integrated systemic amplifier) and a CCKAR (cholecystokinin type A receptor) gene-based, pancreatic-cancer-specific promoter VISA (CCKAR-VISA) composite to target transgene expression in pancreatic tumors in vivo. Targeted expression of BikDD, a potent proapoptotic gene driven by CCKAR-VISA, exhibited significant antitumor effects on pancreatic cancer and prolonged survival in multiple xenograft and syngeneic orthotopic mouse models of pancreatic tumors with virtually no toxicity.


Assuntos
Modelos Biológicos , Neoplasias Pancreáticas/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Colecistocinina/genética , Transgenes
8.
Cancer Cell ; 12(1): 66-80, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17613437

RESUMO

Cells expressing oncogenic c-Myc are sensitized to TNF superfamily proteins. c-Myc also is an important factor in determining whether a cell is sensitive to TRAIL-induced apoptosis, and it is well established that the mitochondrial pathway is essential for apoptosis induced by c-Myc. We investigated whether c-Myc action on the mitochondria is required for TRAIL sensitivity and found that Myc sensitized cells with defective intrinsic signaling to TRAIL. TRAIL induced expression of antiapoptotic Mcl-1 and cIAP2 through activation of NF-kappaB. Both Myc and the multikinase inhibitor sorafenib block NF-kappaB. Combining sorafenib with TRAIL in vivo showed dramatic efficacy in TRAIL-resistant tumor xenografts. We propose the combination of TRAIL with sorafenib holds promise for further development.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Benzenossulfonatos/farmacologia , Proteínas Inibidoras de Apoptose/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Piridinas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/genética , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sorafenibe , Transcrição Gênica/fisiologia , Ubiquitina-Proteína Ligases
9.
Biochim Biophys Acta ; 1835(1): 110-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23147198

RESUMO

Pancreatic cancer is the fourth leading cause of cancer deaths and is characterized by dismal prognosis. Xenograft and genetically engineered mouse (GEM) models have recapitulated critical elements of human pancreatic cancer, providing useful tools to probe the underlying cause of cancer etiology. In this review, we provide a brief description of the common genetic lesions that occur during the development of pancreatic cancer. Next, we describe the strengths and weaknesses of these two models and highlight key discoveries each has made. Although the relative merits of GEM and xenograft pancreatic cancer mouse models are subject to debate, both systems have and will continue to yield essential insights in understanding pancreatic cancer etiology. This information is critical for the development of new methods to screen, treat, and prevent pancreatic cancer.


Assuntos
Modelos Animais de Doenças , Neoplasias Pancreáticas , Animais , Humanos , Camundongos
10.
Cancer Cell ; 10(3): 241-52, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16959615

RESUMO

Reactive oxygen species (ROS) stimulate cell proliferation and induce genetic instability, and their increase in cancer cells is often viewed as an adverse event. Here, we show that such abnormal increases in ROS can be exploited to selectively kill cancer cells using beta-phenylethyl isothiocyanate (PEITC). Oncogenic transformation of ovarian epithelial cells with H-Ras(V12) or expression of Bcr-Abl in hematopoietic cells causes elevated ROS generation and renders the malignant cells highly sensitive to PEITC, which effectively disables the glutathione antioxidant system and causes severe ROS accumulation preferentially in the transformed cells due to their active ROS output. Excessive ROS causes oxidative mitochondrial damage, inactivation of redox-sensitive molecules, and massive cell death. In vivo, PEITC exhibits therapeutic activity and prolongs animal survival.


Assuntos
Transformação Celular Neoplásica/genética , Isotiocianatos/farmacologia , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proteínas de Fusão bcr-abl/metabolismo , Glutationa/metabolismo , Humanos , Isotiocianatos/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(34): 15193-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696914

RESUMO

Feedback regulation of transcription factor NF-kappaB by its inhibitor IkappaBalpha plays an essential role in control of NF-kappaB activity. To understand the biological significance of IkappaBalpha-mediated feedback regulation of NF-kappaB, we generated mice harboring mutated kappaB enhancers in the promoter of the IkappaBalpha gene (IkappaBalpha(M/M)) to inhibit NF-kappaB-regulated IkappaBalpha expression. Here, we report that these mutant mice are defective in NF-kappaB-induced expression of IkappaBalpha. This defective feedback regulation of NF-kappaB by IkappaBalpha not only altered activity of NF-kappaB, but also the expression of NF-kappaB-regulated genes. As a result, IkappaBalpha(M/M), the homozygous knock-in mice with mutated kappaB enhancers in the IkappaBalpha promoter, acquire shorten life span, hypersensitivity to septic shock, abnormal T-cell development and activation, and Sjögren's Syndrome. These findings therefore demonstrate that the IkappaBalpha-mediated feedback regulation of NF-kappaB has an essential role in controlling T-cell development and functions, provide mechanistic insight into the development of Sjögren's Syndrome, and suggest the potential of NF-kappaB signaling as a therapeutic target for Sjögren's Syndrome and other autoimmune diseases.


Assuntos
Proteínas I-kappa B/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Retroalimentação Fisiológica , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Técnicas In Vitro , Ativação Linfocitária , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Inibidor de NF-kappaB alfa , Regiões Promotoras Genéticas , Transdução de Sinais , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
13.
Am J Cancer Res ; 13(4): 1209-1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168336

RESUMO

Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins. We combined in silico prediction with site-directed mutagenesis approaches and identified a putative NES motif of EGFR, which is located in amino acid residues 736-749. Mutation at leucine 747 (L747) in the EGFR NES led to increased nuclear accumulation of the protein via a less efficient release of the exportin CRM1. Interestingly, L747 with serine (L747S) and with proline (L747P) mutations were found in both tyrosine kinase inhibitor (TKI)-treated and -naïve patients with lung cancer who had acquired or de novo TKI resistance and a poor outcome. Reconstituted expression of the single NES mutant EGFRL747P or EGFRL747S, but not the dual mutant along with the internalization-defective or NLS mutation, in lung cancer cells promoted malignant phenotypes, including cell migration, invasiveness, TKI resistance, and tumor initiation, supporting an oncogenic role of nuclear EGFR. Intriguingly, cells with germline expression of the NES L747 mutant developed into B cell lymphoma. Mechanistically, nuclear EGFR signaling is required for sustaining nuclear activated STAT3, but not for Erk. These findings suggest that EGFR functions are compartmentalized and that nuclear EGFR signaling plays a crucial role in tumor malignant phenotypes, leading to tumorigenesis in human cancer.

14.
Sci Adv ; 9(5): eadd6995, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724291

RESUMO

One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.


Assuntos
Carcinoma Ductal Pancreático , Cinurenina , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Cinurenina/genética , Cinurenina/metabolismo , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
15.
Anticancer Res ; 42(10): 4679-4687, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191971

RESUMO

BACKGROUND/AIM: Thrombomodulin™ has cytoprotective and anti-inflammatory function by interacting with G-protein coupled receptor 15 (GPR15). Recombinant TM (rTM), which comprises the extracellular regions of TM, is approved for treatment of disseminated intravascular coagulation. We investigated the anti-tumor effect of rTM for pancreatic ductal adenocarcinoma (PDAC) through GPR15. MATERIALS AND METHODS: We evaluated the expression of GPR15 in human PDAC cell lines and the anti-tumor effect and signals of rTM in vitro and in vivo. To test whether GPR15 would be responsible for the inhibition of cell proliferation by rTM, we evaluated the cell viability of the GPR15 knockdown cells treated with rTM using GPR15-targeting siRNA. RESULTS: We identified PDAC cell lines with GPR15 expression and discovered that rTM inhibited tumor growth and enhanced the effects of gemcitabine (GEM) for the PDAC cell line in a GPR15-dependent manner. Furthermore, we showed that rTM inhibited nuclear factor-kappaB (NF-[Formula: see text]B) and extracellular signal-regulated kinase (ERK) activation through interactions with GPR15. CONCLUSION: We demonstrated that rTM had anti-tumor effect and enhancement of cytotoxic effect of GEM for PDAC cells by inhibiting NF-[Formula: see text]B and ERK activation via GPR15 and suggest that rTM is a potential therapeutic option for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anti-Inflamatórios/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , MAP Quinases Reguladas por Sinal Extracelular , Humanos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/uso terapêutico , Trombomodulina/genética , Trombomodulina/uso terapêutico , Gencitabina , Neoplasias Pancreáticas
16.
Cancer Innov ; 1(1): 55-69, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38089448

RESUMO

Background: Limited by difficulties in early detection and availabilities of effective treatments, pancreatic cancer is a highly malignant disease with poor prognosis. Nuclear receptors are a family of ligand-dependent transcription factors that are highly druggable therapeutic targets playing critical roles in human physiological and pathological development, including cancer. In this study, we explored the therapeutic potential as well as the molecular mechanisms of liver X receptor (LXR) agonist GW3965 in pancreatic cancer. Methods: Soft-agar colony formation assay, xenograft tumors, Oligonucleotide microarray, Reverse transcription real-time polymerase chain reaction, Western immunoblotting and Immunohistochemistry were used in this study. Results: We demonstrated pleotropic in vitro activities of GW3965 in pancreatic cell lines MIA PaCa-2 and BXPC3 including reduction of cell viability, inhibition of cell proliferation, stimulation of cell death, and suppression of colony formation, which translated to significant inhibition of xenograft tumor growth in vitro. By mapping the gene expression profiles, we identified the up-regulations of 188 and the down-regulations of 92 genes common to both cell lines following GW3965 treatment. Genes responsive to GW3965 represent a variety of biological pathways vital for multiple cellular functions. Specifically, we identified that the activating transcription factor 4/thioredoxin-interacting protein/regulated in development and DNA damage responses 1/mechanistic target of rapamycin (ATF4/TXNIP/REDD1/mTOR) signaling critically controls GW3965-mediated regulation of cell proliferation/death. The significance of the ATF4/TXNIP/REDD1/mTOR pathway was further supported by associated expressions in xenograft tumors as well as human pancreatic cancer samples. Conclusions: This study provides the pre-clinical evidence that LXR agonist is a promising therapy for pancreatic cancer.

17.
J Adv Res ; 40: 109-124, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100320

RESUMO

INTRODUCTION: Immunochemotherapy using PD-1/PD-L1 antibodies in combination with chemotherapeutic agents has become a mainstream treatment for cancer patients, but it remains unclear which drug combinations would produce best therapeutic outcome. OBJECTIVES: The purpose of this study was to investigate two common chemotherapeutic drugs, gemcitabine and cisplatin, for their impacts on the therapeutic efficacy of PD-1 antibody in K-ras-driven cancers known to overexpress PD-L1. METHODS: Both in vitro assays and syngeneic mouse tumor models were used in this study. Biochemical and molecular assays were used to determine the effects of drugs on T cell functions in cell culture models and in mouse/human tumor tissues. Allograft tumor models with K-ras mutation were used to investigate the combination effect of gemcitabine or cisplatin with immunotherapy. Data of lung cancer patients with K-ras mutation treated with cisplatin and toripalimab were analyzed to evaluate the clinical relevance of the lab findings. RESULTS: Cisplatin and gemcitabine unexpectedly exert opposite effect on the therapeutic activity of PD-1 antibody in vivo. Gemcitabine antagonizes the therapeutic effect of PD-1 antibody due to its significant inhibition on CD8+ T cell infiltration, which was observed both in mouse tumor allografts and in human pancreatic cancer tissues. In contrast, cisplatin shows synergistic activity with PD-1 antibody by activation of CD8+ T cells through the DNA damage-mediated cGAS-STING sensing mechanism, leading to increase of T cell infiltration and secretion of antitumor cytokines. Clinical data show that a combination of cisplatin with PD-1 antibody toripalimab could be effective in advanced lung cancer patients with K-ras mutation who failed prior therapies. CONCLUSIONS: Our study shows that a key factor in selecting chemotherapeutic agents for immunochemotherapy is the drug's impact on T cell functions, and that cisplatin-based chemotherapy is an excellent choice for combination with immune checkpoint antibody to achieve favorable clinical outcome.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Humanos , Fatores Imunológicos/farmacologia , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Receptor de Morte Celular Programada 1 , Gencitabina
18.
Mol Metab ; 56: 101426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971802

RESUMO

OBJECTIVE: Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS: Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS: Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS: We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animais , Carboxilesterase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Epóxido Hidrolases/genética , Epóxido Hidrolases/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
19.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36282600

RESUMO

BACKGROUNDPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with unpredictable responses to chemotherapy. Approaches to assay patient tumors before treatment and identify effective treatment regimens based on tumor sensitivities are lacking. We developed an organoid-based platform (OBP) to visually quantify patient-derived organoid (PDO) responses to drug treatments and associated tumor-stroma modulation for personalized PDAC therapy.METHODSWe retrospectively quantified apoptotic responses and tumor-stroma cell proportions in PDOs via 3D immunofluorescence imaging through annexin A5, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK-19) levels. Simultaneously, an ex vivo organoid drug sensitivity assay (ODSA) was used to measure responses to standard-of-care regimens. Differences between ODSA results and patient tumor responses were assessed by exact McNemar's test.RESULTSImmunofluorescence signals, organoid growth curves, and Ki-67 levels were measured and authenticated through the OBP for up to 14 days. ODSA drug responses were not different from patient tumor responses, as reflected by CA19-9 reductions following neoadjuvant chemotherapy (P = 0.99). PDOs demonstrated unique apoptotic and tumor-stroma modulation profiles (P < 0.0001). α-SMA/CK-19 ratio levels of more than 1.0 were associated with improved outcomes (P = 0.0179) and longer parental patient survival by Kaplan-Meier analysis (P = 0.0046).CONCLUSIONHeterogenous apoptotic drug responses and tumor-stroma modulation are present in PDOs after standard-of-care chemotherapy. Ratios of α-SMA and CK-19 levels in PDOs are associated with patient survival, and the OBP could aid in the selection of personalized therapies to improve the efficacy of systemic therapy in patients with PDAC.FUNDINGNIH/National Cancer Institute grants (K08CA218690, P01 CA117969, R50 CA243707-01A1, U54CA224065), the Skip Viragh Foundation, the Bettie Willerson Driver Cancer Research Fund, and a Cancer Center Support Grant for the Flow Cytometry and Cellular Imaging Core Facility (P30CA16672).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Medicina de Precisão , Estudos Retrospectivos , Imageamento Tridimensional , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Organoides/patologia , Neoplasias Pancreáticas
20.
Redox Biol ; 38: 101780, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171331

RESUMO

K-ras mutations are major genetic events that drive cancer development associated with aggressive malignant phenotypes, while expression of the immune checkpoint molecule PD-L1 plays a key role in cancer evasion of the immune surveillance that also profoundly affects the patient outcome. However, the relationship between K-ras oncogenic signal and PD-L1 expressions as an important area that requires further investigation. Using both in vitro and in vivo experimental models of K-ras-driven cancer, we found that oncogenic K-ras significantly enhanced PD-L1 expression through a redox-mediated mechanism. Activation of K-rasG12V promoted ROS generation and induced FGFR1 expression, leading to a significant upregulation of PD-L1. We further showed that exogenous ROS such as hydrogen peroxide alone was sufficient to activate FGFR1 and induce PD-L1, while antioxidants could largely abrogate PD-L1 expression in K-ras mutant cells, indicating a critical role of redox regulation. Importantly, genetic knockout of FGFR1 led to a decrease in PD-L1 expression, and impaired tumor growth in vivo due to a significant increase of T cell infiltration in the tumor tissues and thus enhanced T-cell-mediated tumor suppression. Our study has identified a novel mechanism by which K-ras promotes PD-L1 expression, and suggests that modulation of ROS or inhibition of the FGFR1 pathway could be a novel strategy to abrogate PD-L1-mediated immunosuppression and thus potentially improve the efficacy of immunotherapy in K-ras-driven cancers.


Assuntos
Antígeno B7-H1 , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Antígeno B7-H1/genética , Humanos , Imunoterapia , Neoplasias/genética , Espécies Reativas de Oxigênio , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa