RESUMO
Cancer cachexia is a complex malnutrition syndrome that causes progressive dysfunction. This syndrome is accompanied by protein and energy losses caused by reduced nutrient intake and the development of metabolic disorders. As many as 80% of patients with advanced cancer develop cancer cachexia; however, an effective targeted treatment remains to be developed. In this study, we developed a novel rat model that mimics the human pathology during cancer cachexia to elucidate the mechanism underlying the onset and progression of this syndrome. We subcutaneously transplanted rats with SLC cells, a rat lung adenocarcinoma cell line, and evaluated the rats' pathophysiological characteristics. To ensure that our observations were not attributable to simple starvation, we evaluated the characteristics under tube feeding. We observed that SLC-transplanted rats exhibited severe anorexia, weight loss, muscle atrophy, and weakness. Furthermore, they showed obvious signs of cachexia, such as anemia, inflammation, and low serum albumin. The rats also exhibited weight and muscle losses despite sufficient nutrition delivered by tube feeding. Our novel cancer cachexia rat model is a promising tool to elucidate the pathogenesis of cancer cachexia and to conduct further research on the development of treatments and supportive care for patients with this disease.