Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Muscle Res Cell Motil ; 45(3): 139-154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38709429

RESUMO

In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/ß) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose , Fibras Musculares Esqueléticas , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Ratos , Animais , Células Cultivadas
2.
Metabolism ; 158: 155939, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843995

RESUMO

BACKGROUND AND AIM: Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS: We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS: DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION: Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.


Assuntos
Diacilglicerol Quinase , Dieta Hiperlipídica , Camundongos Transgênicos , Obesidade , Animais , Diacilglicerol Quinase/metabolismo , Diacilglicerol Quinase/genética , Obesidade/metabolismo , Obesidade/genética , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Glucose/metabolismo , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Humanos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/prevenção & controle , Camundongos Endogâmicos C57BL , Resistência à Insulina/genética
3.
Cell Rep Med ; 5(1): 101348, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38151020

RESUMO

The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.


Assuntos
Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Lipólise
4.
Function (Oxf) ; 5(3): zqae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711930
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa