Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 227(7): 2936-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21959563

RESUMO

Osteoblast differentiation is regulated by the presence of collagen type I (COL I) extracellular matrix (ECM). We have recently demonstrated that Factor XIIIA (FXIIIA) transglutaminase (TG) is required by osteoblasts for COL I secretion and extracellular deposition, and thus also for osteoblast differentiation. In this study we have further investigated the link between COL I and FXIIIA, and demonstrate that COL I matrix increases FXIIIA levels in osteoblast cultures and that FXIIIA is found as cellular (cFXIIIA) and extacellular matrix (ecmFXIIIA) forms. FXIIIA mRNA, protein expression, cellular localization and secretion were enhanced by ascorbic acid (AA) treatment and blocked by dihydroxyproline (DHP) which inhibits COL I externalization. FXIIIA mRNA was regulated by the MAP kinase pathway. Secretion of ecmFXIIIA, and its enzymatic activity in conditioned medium, were also decreased in osteoblasts treated with the lysyl oxidase inhibitor ß-aminopropionitrile, which resulted in a loosely packed COL I matrix. Osteoblasts secrete a latent, inactive dimeric ecmFXIIIA form which is activated upon binding to the matrix. Monodansyl cadaverine labeling of TG substrates in the cultures revealed that incorporation of the label occurred at sites where fibronectin co-localized with COL I, indicating that ecmFXIIIA secretion could function to stabilize newly deposited matrix. Our results suggest that FXIIIA is an integral part of the COL I deposition machinery, and also that it is part of the ECM-feedback loop, both of which regulate matrix deposition and osteoblast differentiation.


Assuntos
Colágeno Tipo I/metabolismo , Fator XIIIa/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoblastos/metabolismo , Transglutaminases/biossíntese , Aminopropionitrilo/farmacologia , Animais , Ácido Ascórbico/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fator XIIIa/genética , Fibronectinas/metabolismo , Camundongos , Osteoblastos/enzimologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , RNA Mensageiro/genética , Transglutaminases/genética , Transglutaminases/metabolismo
2.
Biomacromolecules ; 12(8): 2946-56, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21661759

RESUMO

Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.


Assuntos
Quitosana/química , Colágeno/química , Osteoblastos/metabolismo , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Hidrogéis , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Osteoblastos/química , Osteoblastos/enzimologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Colloids Surf B Biointerfaces ; 121: 82-91, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24945606

RESUMO

Sodium-free phosphate-based glasses (PGs) doped with both SiO2 and TiO2 (50P2O5-40CaO-xSiO2-(10-x)TiO2, where x=10, 7, 5, 3, and 0mol%) were developed and characterised for controlled ion release applications in bone tissue engineering. Substituting SiO2 with TiO2 directly increased PG density and glass transition temperature, indicating a cross-linking effect of Ti on the glass network which was reflected by significantly reduced degradation rates in an aqueous environment. X-ray diffraction confirmed the presence of Ti(P2O7) in crystallised TiO2-containing PGs, and nuclear magnetic resonance showed an increase in Q(1) phosphate species with increasing TiO2 content. Substitution of SiO2 with TiO2 also reduced hydrophilicity and surface energy. In biological assays, MC3T3-E1 pre-osteoblasts effectively adhered to the surface of PG discs and the incorporation of TiO2, and hence higher stability of the PG network, significantly increased cell viability and metabolic activity indicating the biocompatibility of the PGs. Addition of SiO2 increased ionic release from the PG, which stimulated alkaline phosphatase (ALP) activity in MC3T3-E1 cells upon ion exposure. The incorporation of 3mol% TiO2 was required to stabilise the PG network against unfavourable rapid degradation in aqueous environments. However, ALP activity was greatest in PGs doped with 5-7mol% SiO2 due to up-regulation of ionic concentrations. Thus, the properties of PGs can be readily controlled by modifying the extent of Si and Ti doping in order to optimise ion release and osteoblastic differentiation for bone tissue engineering applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Vidro/química , Osteoblastos/citologia , Dióxido de Silício/farmacologia , Sódio/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Fosfatos de Cálcio/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Análise Diferencial Térmica , Concentração de Íons de Hidrogênio , Íons , Espectroscopia de Ressonância Magnética , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Propriedades de Superfície , Difração de Raios X
4.
Tissue Eng Part A ; 19(23-24): 2553-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23859275

RESUMO

Tissue engineering approaches for articular cartilage (AC) repair using collagen type I (Coll)-based hydrogels are limited by their low collagen fibril density (CFD; <0.5 wt%) and their poor capacity to support chondrocyte differentiation. Chitosan (CTS) is a well-characterized polysaccharide that mimics the glycosaminoglycans (GAGs) present in native AC extracellular matrix and exhibits chondroprotective properties. Here dense Coll/CTS hydrogel discs (16 mm diameter, 140-250 µm thickness) with CFD (∼6 wt%) approaching that of AC were developed to investigate the effect of CTS content on the growth and differentiation of three-dimensionally seeded RCJ3.1C5.18 chondroprogenitor cells. Compared to dense Coll alone, cells seeded within Coll/CTS showed increased viability and metabolic activity, as well as a decrease in cell-mediated gel contraction. Immunohistochemistry for collagen type II, in combination with Safranin O staining and GAG quantification, indicated greater chondroprogenitor differentiation within Coll/CTS, compared to cells seeded within Coll alone. The complex interplay between scaffold geometry, microstructure, composition, mechanical properties and cell function was further evaluated by rolling dense planar sheets to prepare cylindrically shaped constructs having clinically relevant diameters (3-5 mm diameter, 9 mm height). The compressive modulus of the cylindrically shaped constructs decreased significantly after 7 days in culture, and remained unchanged up to 21 days for each scaffold composition. Unlike Coll, cells seeded within Coll/CTS showed greater viability along the entire radial extent of the cylindrical rolls and increased GAG production at each time point. While GAG content decreased over time and reduced cell viability was observed within the core region of all cylindrical rolls, the incorporation of CTS diminished both these effects. In summary, these findings provide insight into the challenges involved when scaling up scaffolds designed and optimised in vitro for tissue repair.


Assuntos
Quitosana/química , Condrócitos/metabolismo , Colágeno Tipo II/química , Hidrogéis/química , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Condrócitos/citologia , Glicosaminoglicanos/biossíntese , Ratos
5.
Tissue Eng Part A ; 16(3): 781-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19778181

RESUMO

Extracellular matrix (ECM) consists of a complex mixture of macromolecules such as collagens, proteoglycans, glycoproteins, and elastic fibers. ECM is essential to preserving tissue architecture, signaling to cells, and regulating calcification in mineralized tissues. Osteoblasts in culture secrete and assemble an extensive ECM rich in type I collagen, and other noncollagenous proteins that can be mineralized. Three-dimensional matrix models can be used in vitro to most appropriately resemble the geometry and biochemistry of natural ECMs. In the present study, MC3T3-E1 mouse calvarial preosteoblasts were cultured within a dense three-dimensional collagenous ECM-like scaffold produced through the method of plastic compression. Plastic compression rapidly produces scaffolds of collagen density approaching native tissue levels with enhanced biomechanical properties while maintaining the viability of resident cells. The proliferation, morphology, and gene expression of seeded MC3T3s, as well as collagen production and matrix mineralization, were investigated for up to 7 weeks in culture. Soluble collagen secretion ranged in concentration from 5 to 30 microg/mL over a 24-h period, concomitant with a steady rate of collagen mRNA expression. Expression of osteogenic markers such as tissue-nonspecific alkaline phosphatase (Alpl), bone sialoprotein (Bsp), and osteopontin (Opn) examined by biochemical assay and reverse transcription-polymerase chain reaction demonstrated cell differentiation. Pericellular voids of ECM around cells, together with evidence of MMP13 mRNA expression, suggested matrix remodeling. Ultrastructural analyses, X-ray microanalysis, micro-computed tomography, as well as Fourier-transform infrared and imaging all confirmed the formation of a calcium-phosphate mineral phase within the fibrillar collagen matrix. In conclusion, preosteoblastic MC3T3 cells seeded within an ECM-like dense collagen scaffold secrete matrix proteins and induce scaffold mineralization in a manner potentially appropriate for bone tissue engineering uses.


Assuntos
Osso e Ossos/fisiologia , Colágeno/farmacologia , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa