Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139152

RESUMO

Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).


Assuntos
Dieta Mediterrânea , Olea , Humanos , Azeite de Oliva/análise , Antioxidantes/farmacologia , Polifenóis , Anti-Inflamatórios
3.
Healthcare (Basel) ; 12(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255121

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by several complications, such as retinopathy, renal failure, cardiovascular disease, and diabetic neuropathy. Among these, neuropathy is the most severe complication, due to the challenging nature of its early detection. The linear Hearth Rate Variability (HRV) analysis is the most common diagnosis technique for diabetic neuropathy, and it is characterized by the determination of the sympathetic-parasympathetic balance on the peripheral nerves through a linear analysis of the tachogram obtained using photoplethysmography. We aimed to perform a multifractal analysis to identify autonomic neuropathy, which was not yet manifest and not detectable with the linear HRV analysis. We enrolled 10 healthy controls, 10 T2DM-diagnosed patients with not-full-blown neuropathy, and 10 T2DM diagnosed patients with full-blown neuropathy. The tachograms for the HRV analysis were obtained using finger photoplethysmography and a linear and/or multifractal analysis was performed. Our preliminary results showed that the linear analysis could effectively differentiate between healthy patients and T2DM patients with full-blown neuropathy; nevertheless, no differences were revealed comparing the full-blown to not-full-blown neuropathic diabetic patients. Conversely, the multifractal HRV analysis was effective for discriminating between full-blown and not-full-blown neuropathic T2DM patients. The multifractal analysis can represent a powerful strategy to determine neuropathic onset, even without clinical diagnostic evidence.

4.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899850

RESUMO

Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Polifenóis/farmacologia , Micronutrientes/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
5.
J Clin Med ; 11(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160016

RESUMO

The Oral Glucose Tolerance Test (OGTT) is currently the gold standard reference test for the diagnosis of gestational diabetes mellitus (GDM). Several critical issues related to analytical variables have challenged its reproducibility and accuracy. This study aimed to assess the analytical reliability of the OGTT for the diagnosis of GDM. A total of 1015 pregnant women underwent a 2 h 75 g OGTT between 24 and 28 weeks of gestation. As recommended by National Academy of Clinical Biochemistry, we considered the total maximum allowable error for glucose plasma measurement as <6.9%. Assuming the possibility of analytical errors within this range for each OGTT glucose plasma value, different scenarios of GDM occurrence were estimated. GDM prevalence with standard criteria was 12.2%, and no hypothetical scenarios have shown a comparable GDM prevalence. Considering all the three OGTT values estimated at the lowest or the highest allowed value according to total maximum allowable error, GDM prevalence significantly varied (4.5% and 25.3%, respectively). Our results indicate that the OGTT is not completely accurate for GDM diagnosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa