Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genes Cells ; 29(7): 567-583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837646

RESUMO

Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.


Assuntos
Heterocromatina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulação Fúngica da Expressão Gênica , Epigênese Genética , Inativação Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética
2.
Nucleic Acids Res ; 48(16): 8977-8992, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710633

RESUMO

The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5'-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as '5'-UGA(C/G)GG-3', are found in 5' leader regions of regulated genes and shown to be responsible for translational control.


Assuntos
Motivos de Nucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Acetiltransferases/metabolismo , Regulação Fúngica da Expressão Gênica , Histidina/metabolismo , Fases de Leitura Aberta , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , eIF-2 Quinase/metabolismo
3.
PLoS Genet ; 15(6): e1008061, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170156

RESUMO

The nuclear pore complex (NPC) forms a gateway for nucleocytoplasmic transport. The outer ring protein complex of the NPC (the Nup107-160 subcomplex in humans) is a key component for building the NPC. Nup107-160 subcomplexes are believed to be symmetrically localized on the nuclear and cytoplasmic sides of the NPC. However, in S. pombe immunoelectron and fluorescence microscopic analyses revealed that the homologous components of the human Nup107-160 subcomplex had an asymmetrical localization: constituent proteins spNup132 and spNup107 were present only on the nuclear side (designated the spNup132 subcomplex), while spNup131, spNup120, spNup85, spNup96, spNup37, spEly5 and spSeh1 were localized only on the cytoplasmic side (designated the spNup120 subcomplex), suggesting the complex was split into two pieces at the interface between spNup96 and spNup107. This contrasts with the symmetrical localization reported in other organisms. Fusion of spNup96 (cytoplasmic localization) with spNup107 (nuclear localization) caused cytoplasmic relocalization of spNup107. In this strain, half of the spNup132 proteins, which interact with spNup107, changed their localization to the cytoplasmic side of the NPC, leading to defects in mitotic and meiotic progression similar to an spNup132 deletion strain. These observations suggest the asymmetrical localization of the outer ring spNup132 and spNup120 subcomplexes of the NPC is necessary for normal cell cycle progression in fission yeast.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Proteínas de Schizosaccharomyces pombe/genética , Transporte Ativo do Núcleo Celular/genética , Ciclo Celular/genética , Divisão Celular/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Citoplasma/genética , Citoplasma/ultraestrutura , Humanos , Meiose/genética , Microscopia de Fluorescência , Membrana Nuclear/genética , Poro Nuclear/ultraestrutura , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
4.
PLoS Genet ; 15(6): e1008129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206516

RESUMO

H3K9 methylation (H3K9me) is a conserved marker of heterochromatin, a transcriptionally silent chromatin structure. Knowledge of the mechanisms for regulating heterochromatin distribution is limited. The fission yeast JmjC domain-containing protein Epe1 localizes to heterochromatin mainly through its interaction with Swi6, a homologue of heterochromatin protein 1 (HP1), and directs JmjC-mediated H3K9me demethylation in vivo. Here, we found that loss of epe1 (epe1Δ) induced a red-white variegated phenotype in a red-pigment accumulation background that generated uniform red colonies. Analysis of isolated red and white colonies revealed that silencing of genes involved in pigment accumulation by stochastic ectopic heterochromatin formation led to white colony formation. In addition, genome-wide analysis of red- and white-isolated clones revealed that epe1Δ resulted in a heterogeneous heterochromatin distribution among clones. We found that Epe1 had an N-terminal domain distinct from its JmjC domain, which activated transcription in both fission and budding yeasts. The N-terminal transcriptional activation (NTA) domain was involved in suppression of ectopic heterochromatin-mediated red-white variegation. We introduced a single copy of Epe1 into epe1Δ clones harboring ectopic heterochromatin, and found that Epe1 could reduce H3K9me from ectopic heterochromatin but some of the heterochromatin persisted. This persistence was due to a latent H3K9me source embedded in ectopic heterochromatin. Epe1H297A, a canonical JmjC mutant, suppressed red-white variegation, but entirely failed to remove already-established ectopic heterochromatin, suggesting that Epe1 prevented stochastic de novo deposition of ectopic H3K9me in an NTA-dependent but JmjC-independent manner, while its JmjC domain mediated removal of H3K9me from established ectopic heterochromatin. Our results suggest that Epe1 not only limits the distribution of heterochromatin but also controls the balance between suppression and retention of heterochromatin-mediated epigenetic diversification.


Assuntos
Epigenômica , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Inativação Gênica , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Mutação
5.
J Cell Sci ; 132(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30975915

RESUMO

In eukaryotic cells, chromosomes are confined to the nucleus, which is compartmentalized by the nuclear membranes; these are continuous with the endoplasmic reticulum membranes. Maintaining the homeostasis of these membranes is an important cellular activity performed by lipid metabolic enzymes. However, how lipid metabolic enzymes affect nuclear membrane functions remains to be elucidated. We found that the very-long-chain fatty acid elongase Elo2 is located in the nuclear membrane and prevents lethal defects associated with nuclear membrane ruptures in mutants of the nuclear membrane proteins Lem2 and Bqt4 in the fission yeast Schizosaccharomyces pombe. Lipid composition analysis shows that t20:0/24:0 phytoceramide (a conjugate of C20:0 phytosphingosine and C24:0 fatty acid) is a major ceramide species in S. pombe The quantity of this ceramide is reduced in the absence of Lem2, and restored by increased expression of Elo2. Furthermore, loss of S. pombe Elo2 can be rescued by its human orthologs. These results suggest that the conserved very-long-chain fatty acid elongase producing the ceramide component is essential for nuclear membrane integrity and cell viability in eukaryotes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetiltransferases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(52): E11208-E11217, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237752

RESUMO

Some long noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (RNAPII) are retained on chromatin, where they regulate RNAi and chromatin structure. The molecular basis of this retention remains unknown. We show that in fission yeast serine 7 (Ser7) of the C-terminal domain (CTD) of RNAPII is required for efficient siRNA generation for RNAi-dependent heterochromatin formation. Surprisingly, Ser7 facilitates chromatin retention of nascent heterochromatic RNAs (hRNAs). Chromatin retention of hRNAs and siRNA generation requires both Ser7 and an RNA-binding activity of the chromodomain of Chp1, a subunit of the RNA-induced transcriptional silencing (RITS) complex. Furthermore, RITS associates with RNAPII in a Ser7-dependent manner. We propose that Ser7 promotes cotranscriptional chromatin retention of hRNA by recruiting the RNA-chromatin connector protein Chp1, which facilitates RNAi-dependent heterochromatin formation. Our findings reveal a function of the CTD code: linking ncRNA transcription to RNAi for heterochromatin formation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Heterocromatina/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Heterocromatina/genética , Domínios Proteicos , RNA Polimerase II/genética , RNA Fúngico/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Serina/genética , Serina/metabolismo
7.
Genes Cells ; 23(3): 122-135, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29292846

RESUMO

Inner nuclear membrane (INM) proteins are thought to play important roles in modulating nuclear organization and function through their interactions with chromatin. However, these INM proteins share redundant functions in metazoans that pose difficulties for functional studies. The fission yeast Schizosaccharomyces pombe exhibits a relatively small number of INM proteins, and molecular genetic tools are available to separate their redundant functions. In S. pombe, it has been reported that among potentially redundant INM proteins, Lem2 displays a unique genetic interaction with another INM protein, Bqt4, which is involved in anchoring telomeres to the nuclear envelope. Double mutations in the lem2 and bqt4 genes confer synthetic lethality during vegetative growth. Here, we show that Lem2 is retained at the nuclear envelope through its interaction with Bqt4, as the loss of Bqt4 results in the exclusive accumulation of Lem2 to the spindle pole body (SPB). An N-terminal nucleoplasmic region of Lem2 bears affinity to both Bqt4 and the SPB in a competitive manner. In contrast, the synthetic lethality of the lem2 bqt4 double mutant is suppressed by the C-terminal region of Lem2. These results indicate that the N-terminal and C-terminal domains of Lem2 show independent functions with respect to Bqt4.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telômero/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Membrana Nuclear/genética , Domínios e Motivos de Interação entre Proteínas , Schizosaccharomyces/crescimento & desenvolvimento , Telômero/genética
8.
Nucleic Acids Res ; 44(9): 4147-62, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26792892

RESUMO

In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2-Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/ultraestrutura , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/ultraestrutura , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/fisiologia , Metilação , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Estabilidade de RNA , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiologia , Telômero/genética , Transcrição Gênica
9.
Biochem Biophys Res Commun ; 482(4): 896-901, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27890612

RESUMO

Schizosaccharomyces pombe, which has a small genome but shares many physiological functions with higher eukaryotes, is a useful single-cell, model eukaryotic organism. In particular, many features concerning chromatin structure and dynamics, including heterochromatin, centromeres, telomeres, and DNA replication origins, are well conserved between S. pombe and higher eukaryotes. However, the S. pombe nucleosome, the fundamental structural unit of chromatin, has not been reconstituted in vitro. In the present study, we established the method to purify S. pombe histones H2A, H2B, H3, and H4, and successfully reconstituted the S. pombe nucleosome in vitro. Our thermal stability assay and micrococcal nuclease treatment assay revealed that the S. pombe nucleosome is markedly unstable and its DNA ends are quite accessible, as compared to the canonical human nucleosome. These findings are important to understand the mechanisms of epigenetic genomic DNA regulation in fission yeast.


Assuntos
Histonas/química , Nucleossomos/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sequência de Aminoácidos , DNA Fúngico/química , Histonas/isolamento & purificação , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Alinhamento de Sequência
10.
Genes Cells ; 21(8): 812-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27334362

RESUMO

Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Retículo Endoplasmático/genética , Lamina Tipo A/genética , Mutação , Membrana Nuclear/genética , Proteínas Nucleares/genética , Telômero/genética
11.
Genes Cells ; 20(3): 160-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492408

RESUMO

In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4(+) gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.


Assuntos
Núcleo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Meiose , Pontos de Checagem da Fase S do Ciclo Celular/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
PLoS Genet ; 9(8): e1003677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966866

RESUMO

Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.


Assuntos
Heterocromatina/genética , RNA Polimerase II/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transcrição Gênica , Centrômero/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
PLoS Genet ; 8(6): e1002776, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737087

RESUMO

To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.


Assuntos
Sobrevivência Celular/genética , Recombinação Homóloga , Proteínas de Ligação a RNA , Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Aneuploidia , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Recombinação Homóloga/genética , Meiose , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Deleção de Sequência , Esporos/genética , Esporos/crescimento & desenvolvimento
14.
Cell Struct Funct ; 39(2): 93-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24954111

RESUMO

In meiosis, pairing and recombination of homologous chromosomes are crucial for the correct segregation of chromosomes, and substantial movements of chromosomes are required to achieve homolog pairing. During this process, it is known that telomeres cluster to form a bouquet arrangement of chromosomes. The fission yeast Schizosaccharomyces pombe provides a striking example of bouquet formation, after which the entire nucleus oscillates between the cell poles (these oscillations are generally called horsetail nuclear movements) while the telomeres remain clustered to the spindle pole body (SPB; a centrosome-equivalent structure in fungi) at the leading edge of the moving nucleus. S. pombe mutants defective in telomere clustering frequently form aberrant spindles, such as monopolar or nonpolar spindles, leading to missegregation of the chromosomes at the subsequent meiotic divisions. Here we demonstrate that such defects in meiotic spindle formation caused by loss of meiotic telomere clustering are rescued when nuclear movement is prevented. On the other hand, stopping nuclear movement does not rescue defects in telomere clustering, nor chromosome missgregation even in cells that have formed a bipolar spindle. These results suggest that movement of the SPB without attachment of telomeres leads to the formation of aberrant spindles, but that recovering bipolar spindles is not sufficient for rescue of chromosome missegregation in mutants lacking telomere clustering.


Assuntos
Cromossomos Fúngicos/fisiologia , Meiose , Schizosaccharomyces/citologia , Corpos Polares do Fuso/metabolismo , Núcleo Celular/fisiologia , Segregação de Cromossomos , Microscopia de Fluorescência , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telômero/metabolismo , Imagem com Lapso de Tempo
15.
Open Biol ; 14(1): 230379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166399

RESUMO

Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mitose , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Protein Expr Purif ; 88(2): 207-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337086

RESUMO

During meiosis, chromosomes adopt a bouquet arrangement, which is widely conserved among eukaryotes. This arrangement is assumed to play an important role in the normal progression of meiosis, by mediating the proper pairing of homologous chromosomes. In Schizosaccharomyces pombe, the complex of Bqt1 and Bqt2 plays a key role in telomere clustering and the subsequent bouquet arrangement of chromosomes during early meiotic prophase. Bqt1 and Bqt2 are part of a multi-protein complex that mediates the attachment of the telomere to the nuclear membrane. However, the structural details of the complex are needed to clarify the mechanism of telomere clustering. To enable biophysical studies of Bqt1 and Bqt2, we established a purification procedure for the Schizosaccharomyces japonicus Bqt1-Bqt2 complex, which is closely related to the S. pombe Bqt1-Bqt2 complex. A co-expression vector, in which one of the expressed subunits is fused to a removable SUMO tag, yielded high amounts of the proteins in the soluble fraction. The solubility of the Bqt1-Bqt2 complex after the removal of the SUMO tag was maintained by including CHAPS, a nondenaturing, zwitterionic detergent, in the purification buffers. These procedures enabled us to rapidly purify the stable Bqt1-Bqt2 complex. The co-purified Bqt1 and Bqt2 proteins formed a stable heterodimer, consistent with results from in vivo studies showing the requirement of both proteins for the bouquet arrangement. The expression and purification procedures established here will facilitate further biophysical studies of the Bqt1-Bqt2 complex.


Assuntos
Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/isolamento & purificação , Sequência de Aminoácidos , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Dados de Sequência Molecular , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/isolamento & purificação , Solubilidade , Proteínas de Ligação a Telômeros/química
17.
Exp Cell Res ; 318(3): 262-75, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22134091

RESUMO

Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a +TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutação/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Sequência de Aminoácidos , Regulação para Baixo , Microtúbulos/química , Modelos Moleculares , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Fosforilação/genética , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
18.
Genes Cells ; 16(10): 1000-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21880100

RESUMO

Inner nuclear membrane (INM) proteins play a role in spatial organization of chromosomes within the nucleus. In the fission yeast Schizosaccharomyces pombe, Sad1, an INM protein of the conserved SUN-domain family, plays an active role in moving chromosomes along the nuclear membranes during meiotic prophase. Ima1 is another conserved INM protein recently identified. A previous study claimed that Ima1 is essential for mitotic cell growth, linking centromeric heterochromatin to the spindle-pole body. However, we obtained results contradictory to the previously proposed role for Ima1: Ima1 was dispensable for mitotic cell growth or centromere positioning. This discrepancy was attributed to incorrect ima1 deletion mutants used in the previous study. Our results show that Ima1 collaborates with two other conserved INM proteins of the LEM-domain family that are homologous to human Man1 and Lem2. Loss of any one of three INM proteins has no effect on mitotic cell growth; however, loss of all these proteins causes severe defects in mitotic cell growth and nuclear membrane morphology. Considering that all three INM proteins interact with Sad1, these results suggest that Ima1, Lem2 and Man1 play at least partially redundant roles for nuclear membrane organization.


Assuntos
Centrômero/metabolismo , Proteínas de Membrana/metabolismo , Lâmina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Mitose , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Transporte Proteico , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Fuso Acromático/metabolismo
19.
Nature ; 442(7098): 45-50, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16823445

RESUMO

Much remains unknown about the molecular regulation of meiosis. Here we show that meiosis-specific transcripts are selectively removed if expressed during vegetative growth in fission yeast. These messenger RNAs contain a cis-acting region--which we call the DSR--that confers this removal via binding to a YTH-family protein Mmi1. Loss of Mmi1 function severely impairs cell growth owing to the untimely expression of meiotic transcripts. Microarray analysis reveals that at least a dozen such meiosis-specific transcripts are eliminated by the DSR-Mmi1 system. Mmi1 remains in the form of multiple nuclear foci during vegetative growth. At meiotic prophase these foci precipitate to a single focus, which coincides with the dot formed by the master meiosis-regulator Mei2. A meiotic arrest due to the loss of the Mei2 dot is released by a reduction in Mmi1 activity. We propose that Mei2 turns off the DSR-Mmi1 system by sequestering Mmi1 to the dot and thereby secures stable expression of meiosis-specific transcripts.


Assuntos
Meiose/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Mitose/genética , Prófase , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo , Transcrição Gênica/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
20.
Commun Biol ; 5(1): 78, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058555

RESUMO

DNA transfection is an important technology in life sciences, wherein nuclear entry of DNA is necessary to express exogenous DNA. Non-viral vectors and their transfection reagents are useful as safe transfection tools. However, they have no effect on the transfection of non-proliferating cells, the reason for which is not well understood. This study elucidates the mechanism through which transfected DNA enters the nucleus for gene expression. To monitor the behavior of transfected DNA, we introduce plasmid bearing lacO repeats and RFP-coding sequences into cells expressing GFP-LacI and observe plasmid behavior and RFP expression in living cells. RFP expression appears only after mitosis. Electron microscopy reveals that plasmids are wrapped with nuclear envelope (NE)‒like membranes or associated with chromosomes at telophase. The depletion of BAF, which is involved in NE reformation, delays plasmid RFP expression. These results suggest that transfected DNA is incorporated into the nucleus during NE reformation at telophase.


Assuntos
Núcleo Celular/fisiologia , DNA/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/genética , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/genética , Mutação , Proteínas Nucleares/genética , Análise de Célula Única , Telófase , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa