Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Rev ; 54(1): 63-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35129408

RESUMO

Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are still not fully understood; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss (1) the biological aspects of wound healing and skin regeneration, (2) important characteristics and functions of biomaterials for skin regeneration applications, and (3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.


Assuntos
Materiais Biocompatíveis , Pele Artificial , Animais , Humanos , Pele , Transplante de Pele , Engenharia Tecidual , Cicatrização
2.
J Appl Toxicol ; 41(9): 1456-1466, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417269

RESUMO

The use of synthetic materials for biomedical applications is ever expanding. One of the major requirements for these materials is biocompatibility, which includes prevention of immune system responses. Due to the inherent complexity of their structural composition, the polyurethane (PU) family of polymers is being used in a variety of medical applications, from soft and hard tissue scaffolds to intricate coatings on implantable devices. Herein, we investigated whether two polymer materials, D3 and D7, induced an immune response, measured by their effects on a dendritic cell (DC) line, JAWS II. Using a lactate dehydrogenase cytotoxicity assay and Annexin V/PI staining, we found that the PU materials did not induce cytotoxicity in DC cells. Using confocal microscopy, we also showed that the materials did not induce activation or maturation, as compared to positive controls. This was confirmed by looking at various markers, CD80, CD86, MHC class I, and MHC class II, via flow cytometry. Overall, the results indicated that the investigated PU films are biocompatible in terms of immunotoxicology and immunogenicity and show great promise for use in regenerative medicine.


Assuntos
Materiais Biocompatíveis , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Teste de Materiais/métodos , Poliuretanos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Éteres , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/toxicidade , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais
3.
Cartilage ; 13(2_suppl): 1720S-1733S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34809478

RESUMO

OBJECTIVE: To support the preclinical evaluation of therapeutics that target chondrogenesis, our goal was to generate a rat strain that can noninvasively report endogenous chondrogenic activity. DESIGN: A transgene was constructed in which the dual expression of bioluminescent (firefly luciferase) and fluorescent (mCherry) reporters is controlled by regulatory sequences from rat Col2a1. Candidate lines were established on a Lewis background and characterized by serial bioluminescence imaging as well as ex vivo measurement of molecular reporter levels in several tissues. The sensitivity and specificity of the reporter strain were assessed in models of orthotopic and ectopic chondrogenesis. RESULTS: Substantial bioluminescence signal was detected from cartilaginous regions, including the appendicular synovial joints, spine, sternum, nose, and pinnae. Bioluminescent radiance was intense at 1 month of age, rapidly declined with continued development, yet remained detectable in 2-year-old animals. Explant imaging and immunohistochemistry confirmed that both molecular reporters were localized to cartilage. Implantation of wild-type bone marrow stromal cells into osteochondral defects made in both young adult and aged reporter rats led to a time-dependent elevation of intra-articular reporter activity concurrent with cartilaginous tissue repair. To stimulate ectopic, endochondral bone formation, bone morphogenetic protein 2 was overexpressed in the gastrocnemius muscle, which led to bioluminescent signal that closely preceded heterotopic ossification. CONCLUSIONS: This strain can help develop strategies to stimulate cartilage repair and endochondral bone formation or to inhibit chondrogenesis associated with heterotopic ossification.


Assuntos
Condrogênese , Engenharia Tecidual , Animais , Condrogênese/genética , Osteogênese , Ratos , Ratos Endogâmicos Lew , Ratos Transgênicos , Engenharia Tecidual/métodos
4.
Science ; 385(6712): 1018, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39208093
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa