RESUMO
The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons g_{Ae} is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg. A double-sided, profile likelihood ratio statistic test excludes g_{Ae} larger than 3.5×10^{-12} (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c^{2}, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV/c^{2} are excluded. For galactic axionlike particles, values of g_{Ae} larger than 4.2×10^{-13} are excluded for particle masses in the range 1-16 keV/c^{2}. These are the most stringent constraints to date for these interactions.
RESUMO
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=1.6×10^{-41} cm^{2} (σ_{p}=5×10^{-40} cm^{2}) at 35 GeV c^{-2}, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
RESUMO
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.
RESUMO
We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium ß source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.
RESUMO
We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41} cm^{2} (σ_{p}=2.9×10^{-39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
RESUMO
The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.