Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 227: 1-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703879

RESUMO

Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.


Assuntos
Inflamação , Ativação de Macrófagos , Macrófagos , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Ativação de Macrófagos/genética , Inflamação/genética , Inflamação/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Regulação da Expressão Gênica , Citocinas/metabolismo , Citocinas/genética
2.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164106

RESUMO

An efficient surface-mediated synthetic method to facilitate access to a novel class of thiazolidines is described. The rationale behind the design of the targeted thiazolidines was to prepare stable thiazolidine analogues and evaluate their anti-proliferative activity against a breast cancer cell line (MCF7). Most of the synthesized analogues exhibited increased potency ranging from 2-15-fold higher compared to the standard reference, cisplatin. The most active thiazolidines contain a halogenated or electron withdrawing group attached to the N-phenyl ring of exocyclic 2-imino group. However, combination of the two substituents did not enhance the activity. The anti-proliferative activity was measured in terms of IC50 values using an MTT assay.


Assuntos
Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Tiazolidinas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Tiazolidinas/farmacologia
3.
Gene ; 897: 148055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043834

RESUMO

Brain derived neurotrophic factor (BDNF) is a major neurotransmitter that controls growth and maintenance of neurons and its misregulation is linked to neurodegeneration and human diseases. Estradiol (E2) is well-known to regulate the process of differentiation and plasticity of hippocampal neurons. Here we examined the mechanisms of BDNF gene regulation under basal conditions and under stimuli such as E2. Our results demonstrated that BDNF expression is induced by E2 in vitro in HT22 cells (hippocampal neuronal cells) and in vivo (in ovariectomized mouse brain under E2-treatment). Using chromatin immunoprecipitation assay, we demonstrated that estrogen receptors (ERα, ERß) were enriched at the BDNF promoter in presence of E2. Additionally, ER-coregulators (e.g., CBP/p300, MLL3), histone acetylation, H3K4-trimethylation, and RNA polymerase II levels were also elevated at the BDNF promoter in an E2-dependent manner. Additionally, under the basal conditions (in the absence of E2), the long noncoding RNA HOTAIR and its interacting partners PRC2 and LSD1 complexes binds to the promoter of BDNF and represses its expression. HOTAIR knockdown -relieves the repression resulting in elevation of BDNF expression. Further, levels of HOTAIR-interacting partners, EZH2 and LSD1 were reduced at the BDNF promoter upon HOTAIR-knockdown revealing that HOTAIR plays a regulatory role in BDNF gene expression by modulating promoter histone modifications. Additionally, we showed that E2 induced-BDNF expression is mediated by the displacement of silencing factors, EZH2 and LSD1 at BDNF promoter and subsequent recruitment of active transcription machinery. These results reveal the mechanisms of BDNF gene regulation under the basal condition and in presence of a positive regulator such as E2 in neuronal cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estradiol , RNA Longo não Codificante , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Estradiol/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , RNA Longo não Codificante/metabolismo
4.
Sci Rep ; 13(1): 4036, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899011

RESUMO

Inflammation plays a central role in immune response and macrophage activation. Emerging studies demonstrate that along with proteins and genomic factors, noncoding RNA are potentially involved in regulation of immune response and inflammation. Our recent study demonstrated that lncRNA HOTAIR plays key roles in cytokine expression and inflammation in macrophages. The primary goal of this study is to discover novel lncRNAs that are crucial players in inflammation, macrophage activation, and immune response in humans. Towards this, we have stimulated THP1-derived macrophages (THP1-MΦ) with lipopolysaccharides (LPS) and performed the whole transcriptome RNA-seq analysis. Based on this analysis, we discovered that along with well-known marker for inflammation (such as cytokines), a series of long noncoding RNAs (lncRNAs) expression were highly induced upon LPS-stimulation of macrophages, suggesting their potential roles in inflammation and macrophage activation. We termed these family of lncRNAs as Long-noncoding Inflammation Associated RNA (LinfRNA). Dose and time dependent analysis demonstrated that many human LinfRNA (hLinfRNAs) expressions follow similar patterns as cytokine expressions. Inhibition of NF-κB suppressed the expression of most hLinfRNAs suggesting their potential regulation via NF-κB activation during inflammation and macrophage activation. Antisense-mediated knockdown of hLinfRNA1 suppressed the LPS-induced expression of cytokines and pro-inflammatory genes such as IL6, IL1ß, and TNFα expression, suggesting potential functionality of the hLinfRNAs in cytokine regulation and inflammation. Overall, we discovered a series of novel hLinfRNAs that are potential regulators of inflammation and macrophage activation and may be linked to inflammatory and metabolic diseases.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , NF-kappa B/metabolismo , Ativação de Macrófagos , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Citocinas/genética
5.
Front Genet ; 11: 592436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384715

RESUMO

HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERß downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa