Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
2.
Immunology ; 165(2): 171-194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767637

RESUMO

Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Anticorpos Monoclonais , Biomarcadores , Técnicas de Cultura de Células , Galinhas , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Receptores Acoplados a Proteínas G/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
3.
BMC Genomics ; 22(1): 411, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34082718

RESUMO

BACKGROUND: Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans and the handling or consumption of contaminated poultry meat is a key source of infection. Selective breeding of poultry that exhibit elevated resistance to Campylobacter is an attractive control strategy. Here we studied the global transcriptional response of inbred chicken lines that differ in resistance to C. jejuni colonisation at a key site of bacterial persistence. RESULTS: Three-week-old chickens of line 61 and N were inoculated orally with C. jejuni strain M1 and caecal contents and tonsils were sampled at 1 and 5 days post-infection. Caecal colonisation was significantly lower in line 61 compared to line N at 1 day post-infection, but not 5 days post-infection. RNA-Seq analysis of caecal tonsils of both lines revealed a limited response to C. jejuni infection compared to age-matched uninfected controls. In line N at days 1 and 5 post-infection, just 8 and 3 differentially expressed genes (DEGs) were detected (fold-change > 2 and false-discovery rate of < 0.05) relative to uninfected controls, respectively. In the relatively resistant line 61, a broader response to C. jejuni was observed, with 69 DEGs relating to immune regulation, cell signalling and metabolism at 1 day post-infection. However, by day 5 post-infection, no DEGs were detected. By far, the greatest number of DEGs were between uninfected birds of the two lines implying that differential resistance to C. jejuni is intrinsic. Of these genes, several Major Histocompatibility Complex class I-related genes (MHCIA1, MHCBL2 and MHCIY) and antimicrobial peptides (MUC2, AvBD10 and GZMA) were expressed to a greater extent in line N. Two genes within quantitative trait loci associated with C. jejuni colonisation were also more highly expressed in line N (ASIC4 and BZFP2). Quantitative reverse-transcriptase PCR analysis of a subset of transcripts confirmed the RNA-Seq results. CONCLUSIONS: Our data indicate a limited transcriptional response in the caecal tonsils of inbred chickens to intestinal colonisation by Campylobacter but identify a large number of differentially transcribed genes between lines 61 and N that may underlie variation in heritable resistance to C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/veterinária , Campylobacter jejuni/genética , Ceco , Galinhas/genética , Perfilação da Expressão Gênica , Humanos , Doenças das Aves Domésticas/genética , Transcriptoma
4.
Microb Cell Fact ; 20(1): 193, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600535

RESUMO

BACKGROUND: Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. RESULTS: We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. CONCLUSIONS: We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost "live-attenuated multivalent vaccine factories" with the ability to express glycoconjugates in poultry.


Assuntos
Infecções por Campylobacter/prevenção & controle , Infecções por Clostridium/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Desenvolvimento de Vacinas/métodos , Animais , Campylobacter jejuni/imunologia , Galinhas , Clostridium perfringens/imunologia , Escherichia coli/imunologia , Vacinas Atenuadas/imunologia , Vacinas Combinadas/imunologia
5.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31980428

RESUMO

Campylobacteriosis is the leading foodborne bacterial diarrheal illness in many countries, with up to 80% of human cases attributed to the avian reservoir. The only control strategies currently available are stringent on-farm biosecurity and carcass treatments. Heritable differences in the resistance of chicken lines to Campylobacter colonization have been reported and resistance-associated quantitative trait loci are emerging, although their impact on colonization appears modest. Recent studies indicated a protective role of the microbiota against colonization by Campylobacter in chickens. Furthermore, in murine models, differences in resistance to bacterial infections can be partially transferred between lines by transplantation of gut microbiota. In this study, we investigated whether heritable differences in colonization of inbred chicken lines by Campylobacter jejuni are associated with differences in cecal microbiota. We performed homologous and heterologous cecal microbiota transplants between line 61 (resistant) and line N (susceptible) by orally administering cecal contents collected from 3-week-old donors to day-of-hatch chicks. Recipient birds were challenged (day 21) with C. jejuni 11168H. In birds given homologous microbiota, the differential resistance of lines to C. jejuni colonization was reproduced. Contrary to our hypothesis, transfer of cecal microbiota from line 61 to line N significantly increased C. jejuni colonization. No significant difference in the overall composition of the cecal microbial communities of the two lines was identified, although line-specific differences for specific operational taxonomic units were identified. Our data suggest that while heritable differences in avian resistance to Campylobacter colonization exist, these are not explained by significant variation in the cecal microbiota.IMPORTANCECampylobacter is a leading cause of foodborne diarrheal disease worldwide. Poultry are a key source of human infections, but there are currently few effective measures against Campylobacter in poultry during production. One option to control Campylobacter may be to alter the composition of microbial communities in the avian intestines by introducing beneficial bacteria, which exclude the harmful ones. We previously described two inbred chicken lines which differ in resistance to intestinal colonization by Campylobacter Here, we investigated the composition of the microbial communities in the gut of these lines and whether transferring gut bacteria between the resistant and susceptible lines alters their resistance to Campylobacter No major differences in microbial populations were found, and resistance or susceptibility to colonization was not conferred by transferring gut bacteria between lines. The data suggest that gut microbiota did not play a role in resistance to Campylobacter colonization, at least in the lines used.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Ceco/microbiologia , Galinhas , Resistência à Doença , Microbioma Gastrointestinal , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Campylobacter/microbiologia , Galinhas/genética , Feminino , Endogamia , Masculino
6.
BMC Genomics ; 20(1): 20, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621582

RESUMO

BACKGROUND: Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. RESULTS: Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. CONCLUSIONS: This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking.


Assuntos
Elementos de DNA Transponíveis/genética , Infecções por Salmonella/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Animais , Carbono-Oxigênio Liases/genética , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Reservatórios de Doenças/microbiologia , Humanos , Íleo/microbiologia , Intestinos/microbiologia , Linfonodos/microbiologia , Mutação , Infecções por Salmonella/microbiologia , Infecções por Salmonella/transmissão , Salmonella enterica/patogenicidade , Salmonella typhimurium/patogenicidade
7.
Avian Pathol ; 48(2): 157-167, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30570345

RESUMO

Avian pathogenic E. coli (APEC) cause severe respiratory and systemic disease. To address the genetic and immunological basis of resistance, inbred chicken lines were used to establish a model of differential resistance to APEC, using strain O1 of serotype O1:K1:H7. Inbred lines 72, 15I and C.B12 and the outbred line Novogen Brown were inoculated via the airsac with a high dose (107 colony-forming units, CFU) or low dose (105 CFU) of APEC O1. Clinical signs, colibacillosis lesion score and bacterial colonization of tissues after high dose challenge were significantly higher in line 15I and C.B12 birds. The majority of the 15I and C.B12 birds succumbed to the infection by 14 h post-infection, whilst none of the line 72 and the Novogen Brown birds developed clinical signs. No difference was observed after low dose challenge. In a repeat study, inbred lines 72 and 15I were inoculated with low, intermediate or high doses of APEC O1 ranging from 105 to 107 CFU. The colonization of lung was highest in line 15I after high dose challenge and birds developed clinical signs; however, colonization of blood and spleen, clinical signs and lesion score were not different between lines. No difference was observed after intermediate or low dose challenge. Ex vivo, the phagocytic and bactericidal activity of lung leukocytes from line 72 and 15I birds did not differ. Our data suggest that although differential resistance of inbred lines 72, 15I and C.B12 to APEC O1 challenge is apparent, it is dependent on the infectious dose. Research Highlights Lines 15I and C.B12 are more susceptible than line 72 to a high dose of APEC O1. Differential resistance is dose-dependent in lines 15I and 72. Phagocytic and bactericidal activity is similar and dose independent.


Assuntos
Galinhas , Resistência à Doença , Infecções por Escherichia coli/veterinária , Escherichia coli/imunologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Sacos Aéreos/microbiologia , Animais , Animais Endogâmicos , Anticorpos Heterófilos/imunologia , Carga Bacteriana , Relação Dose-Resposta Imunológica , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Macrófagos/imunologia , Masculino , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
8.
Food Microbiol ; 74: 163-170, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29706332

RESUMO

Campylobacter is the most common cause of bacterial food-borne diarrhoeal disease worldwide. Chicken meat is considered the main source of human infection; however, C. jejuni and C. coli have also been reported in a range of livestock and wildlife species, including pheasants. Wild pheasant meat reaches the consumer's table because of hunting but there is a lack of information concerning the risk of Campylobacter infection in humans. This study aimed to determine the prevalence of Campylobacter in wild game pheasants in Scotland, to identify the main sequence types (STs) present and to evaluate their impact on public health. A total of 287 caecal samples from five Scottish regions were collected during the hunting season 2013/2014. Campylobacter was detected and enumerated using standard culture methods. PCR and High Throughput Multi Locus Sequence Typing (HiMLST) were used for species identification and sequence typing. In total, 36.6% of 287 caecal samples (n = 105; 95% CI: 14-59.2) were Campylobacter positive. Using PCR, 62.6% of samples (n = 99) were identified as C. coli and 37.4% as C. jejuni. HiMLST (n = 80) identified 19 different STs. ST-828 (n = 19) was the most common, followed by ST-827 (n = 12) and ST19 (n = 7). Sixteen of the 19 STs isolated are present in humans and eight are C. coli STs that account for 6.96% of human infections, although the overall risk to public health from pheasant meat is still considered to be low.


Assuntos
Animais Selvagens/microbiologia , Infecções por Campylobacter/virologia , Campylobacter/isolamento & purificação , Galliformes/microbiologia , Aves Domésticas/microbiologia , Saúde Pública , Animais , Carga Bacteriana , Campylobacter/classificação , Campylobacter/genética , Campylobacter/patogenicidade , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , DNA Bacteriano/genética , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Geografia , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Prevalência , Escócia/epidemiologia , Análise de Sequência
9.
BMC Biol ; 13: 12, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25857347

RESUMO

BACKGROUND: Macrophages have many functions in development and homeostasis as well as innate immunity. Recent studies in mammals suggest that cells arising in the yolk sac give rise to self-renewing macrophage populations that persist in adult tissues. Macrophage proliferation and differentiation is controlled by macrophage colony-stimulating factor (CSF1) and interleukin 34 (IL34), both agonists of the CSF1 receptor (CSF1R). In the current manuscript we describe the origin, function and regulation of macrophages, and the role of CSF1R signaling during embryonic development, using the chick as a model. RESULTS: Based upon RNA-sequencing comparison to bone marrow-derived macrophages grown in CSF1, we show that embryonic macrophages contribute around 2% of the total embryo RNA in day 7 chick embryos, and have similar gene expression profiles to bone marrow-derived macrophages. To explore the origins of embryonic and adult macrophages, we injected Hamburger-Hamilton stage 16 to 17 chick embryos with either yolk sac-derived blood cells, or bone marrow cells from EGFP+ donors. In both cases, the transferred cells gave rise to large numbers of EGFP+ tissue macrophages in the embryo. In the case of the yolk sac, these cells were not retained in hatched birds. Conversely, bone marrow EGFP+ cells gave rise to tissue macrophages in all organs of adult birds, and regenerated CSF1-responsive marrow macrophage progenitors. Surprisingly, they did not contribute to any other hematopoietic lineage. To explore the role of CSF1 further, we injected embryonic or hatchling CSF1R-reporter transgenic birds with a novel chicken CSF1-Fc conjugate. In both cases, the treatment produced a large increase in macrophage numbers in all tissues examined. There were no apparent adverse effects of chicken CSF1-Fc on embryonic or post-hatch development, but there was an unexpected increase in bone density in the treated hatchlings. CONCLUSIONS: The data indicate that the yolk sac is not the major source of macrophages in adult birds, and that there is a macrophage-restricted, self-renewing progenitor cell in bone marrow. CSF1R is demonstrated to be limiting for macrophage development during development in ovo and post-hatch. The chicken provides a novel and tractable model to study the development of the mononuclear phagocyte system and CSF1R signaling.


Assuntos
Galinhas/imunologia , Sistema Fagocitário Mononuclear/embriologia , Sistema Fagocitário Mononuclear/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Embrião de Galinha , Galinhas/genética , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Sistema Fagocitário Mononuclear/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Saco Vitelino/citologia
10.
Vaccines (Basel) ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675777

RESUMO

Campylobacter is a major cause of acute gastroenteritis in humans, and infections can be followed by inflammatory neuropathies and other sequelae. Handling or consumption of poultry meat is the primary risk factor for human campylobacteriosis, and C. jejuni remains highly prevalent in retail chicken in many countries. Control of Campylobacter in the avian reservoir is expected to limit the incidence of human disease. Toward this aim, we evaluated a glycoconjugate vaccine comprising the fibronectin-binding adhesin FlpA conjugated to up to ten moieties of the conserved N-linked heptasaccharide glycan of C. jejuni or with FlpA alone. The glycan dose significantly exceeded previous trials using FlpA with two N-glycan moieties. Vaccinated birds were challenged with C. jejuni orally or by exposure to seeder-birds colonised by C. jejuni to mimic natural transmission. No protection against caecal colonisation was observed with FlpA or the FlpA glycoconjugate vaccine. FlpA-specific antibody responses were significantly induced in vaccinated birds at the point of challenge relative to mock-vaccinated birds. A slight but significant antibody response to the N-glycan was detected after vaccination with FlpA-10×GT and challenge. As other laboratories have reported protection against Campylobacter with FlpA and glycoconjugate vaccines in chickens, our data indicate that vaccine-mediated immunity may be sensitive to host- or study-specific variables.

11.
Vaccine ; 41(29): 4295-4301, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37277252

RESUMO

Campylobacter jejuni is a leading global cause of bacterial gastroenteritis in humans, and poultry are a major reservoir. Glycoconjugate vaccines containing the conserved C. jejuni N-glycan have previously been reported to be effective at reducing caecal colonisation of chickens by C. jejuni. These include recombinant subunit vaccines, live E. coli strains expressing the N-glycan on the surface as well as outer membrane vesicles (OMVs) derived from these E. coli strains. In this study, we evaluated the efficacy of live E. coli expressing the C. jejuni N-glycan from a plasmid and glycosylated OMVs (G-OMVs) derived from them against colonisation by different C. jejuni strains. Despite the C. jejuni N-glycan being expressed on the surface of the live strain and the OMVs, no reduction in caecal colonisation by C. jejuni was observed and N-glycan-specific responses were not detected.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Doenças das Aves Domésticas , Humanos , Animais , Galinhas , Escherichia coli/genética , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Polissacarídeos , Vacinas Sintéticas
12.
Front Immunol ; 14: 1273661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954617

RESUMO

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Assuntos
Linfócitos T CD8-Positivos , Galinhas , Animais , Apresentação de Antígeno , Células Dendríticas , Apresentação Cruzada , Mamíferos
13.
Poult Sci ; 101(2): 101624, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936955

RESUMO

The cecal microbiota plays numerous roles in chicken health and nutrition. Where such microbiota differs between lines exhibiting distinct phenotypes, microbiota transplantation offers scope to dissect the role of gut microbial communities in those traits. However, the composition and stability of transplants over time is relatively ill-defined and varying levels of success have been reported. In this study, we transplanted cecal contents from adult Roslin broilers into chicks from a different broiler line. Within <12 h posthatch, Ross 308 chicks received an oral gavage of cecal contents (n = 26) or a PBS control (n = 24). Cecal contents samples were collected postmortem from birds on d 1, 2, 3, 4, and 7 posthatch. DNA was extracted from these samples and the transplant inoculum and the V4 region of the 16S rRNA gene was amplified and sequenced. The cecal microbiota of chickens receiving the microbiota transplant was significantly different in composition and significantly richer and more diverse, in comparison to control birds. At the final timepoint (d 7), of the 150 Operational Taxonomic Units (OTUs) that were >0.1% abundant (average) in the donor sample, 137 were detected in the treated group (75 were >0.1% abundant (average)) while only 88 were detected in the control group (29 were >0.1% abundant (average)). Our data therefore suggests that stable transplantation of the cecal microbiota between lines is achievable using the methods described in this paper.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ceco , Galinhas , RNA Ribossômico 16S/genética
14.
J Mol Biol ; 433(19): 167200, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34400181

RESUMO

Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Linfócitos T/citologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Linhagem Celular , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Linfócitos T/efeitos dos fármacos , Uridina Difosfato N-Acetilglicosamina/metabolismo
15.
Vaccine ; 39(51): 7413-7420, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34799141

RESUMO

Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and handling or consumption of contaminated poultry meat is the key source of infection. Glycoconjugate vaccines containing the C. jejuni N-glycan have been reported to be partially protective in chickens. However, our previous studies with subunit vaccines comprising the C. jejuni FlpA or SodB proteins with up to two or three C. jejuni N-glycans, respectively, failed to elicit significant protection. In this study, protein glycan coupling technology was used to add up to ten C. jejuni N-glycans onto a detoxified form of Pseudomonas aeruginosa exotoxin A (ExoA). The glycoprotein, G-ExoA, was evaluated for efficacy against intestinal colonisation of White Leghorn chickens by C. jejuni strains M1 and 11168H relative to unglycosylated ExoA. Chickens were challenged with the minimum dose required for reliable colonisation, which was 102 colony-forming units (CFU) for strain M1 and and 104 CFU for strain 11168H. Vaccine-specific serum IgY was detected in chickens vaccinated with both ExoA and G-ExoA. However, no reduction in caecal colonisation by C. jejuni was observed. While the glycan dose achieved with G-ExoA was higher than FlpA- or SodB-based glycoconjugates that were previously evaluated, it was lower than that of glycoconjugates where protection against C. jejuni has been reported, indicating that protection may be highly sensitive to the amount of glycan presented and/or study-specific variables.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Galinhas , Glicoconjugados , Humanos , Polissacarídeos , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Subunidades Antigênicas
16.
Commun Biol ; 4(1): 498, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893390

RESUMO

The emergence of new bacterial pathogens is a continuing challenge for agriculture and food safety. Salmonella Typhimurium is a major cause of foodborne illness worldwide, with pigs a major zoonotic reservoir. Two phylogenetically distinct variants, U288 and ST34, emerged in UK pigs around the same time but present different risk to food safety. Here we show using genomic epidemiology that ST34 accounts for over half of all S. Typhimurium infections in people while U288 less than 2%. That the U288 clade evolved in the recent past by acquiring AMR genes, indels in the virulence plasmid pU288-1, and accumulation of loss-of-function polymorphisms in coding sequences. U288 replicates more slowly and is more sensitive to desiccation than ST34 isolates and exhibited distinct pathogenicity in the murine model of colitis and in pigs. U288 infection was more disseminated in the lymph nodes while ST34 were recovered in greater numbers in the intestinal contents. These data are consistent with the evolution of S. Typhimurium U288 adaptation to pigs that may determine their reduced zoonotic potential.


Assuntos
Adaptação Biológica , Zoonoses Bacterianas/epidemiologia , Salmonelose Animal/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/fisiologia , Salmonella typhimurium/patogenicidade , Animais , Zoonoses Bacterianas/microbiologia , Ecossistema , Inglaterra/epidemiologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/microbiologia , Virulência , País de Gales/epidemiologia
17.
Front Cell Infect Microbiol ; 11: 733811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568096

RESUMO

Gastrointestinal (GI) infections in sheep have significant implications for animal health, welfare and productivity, as well as being a source of zoonotic pathogens. Interactions between pathogens and epithelial cells at the mucosal surface play a key role in determining the outcome of GI infections; however, the inaccessibility of the GI tract in vivo significantly limits the ability to study such interactions in detail. We therefore developed ovine epithelial organoids representing physiologically important gastric and intestinal sites of infection, specifically the abomasum (analogous to the stomach in monogastrics) and ileum. We show that both abomasal and ileal organoids form self-organising three-dimensional structures with a single epithelial layer and a central lumen that are stable in culture over serial passage. We performed RNA-seq analysis on abomasal and ileal tissue from multiple animals and on organoids across multiple passages and show the transcript profile of both abomasal and ileal organoids cultured under identical conditions are reflective of the tissue from which they were derived and that the transcript profile in organoids is stable over at least five serial passages. In addition, we demonstrate that the organoids can be successfully cryopreserved and resuscitated, allowing long-term storage of organoid lines, thereby reducing the number of animals required as a source of tissue. We also report the first published observations of a helminth infecting gastric and intestinal organoids by challenge with the sheep parasitic nematode Teladorsagia circumcincta, demonstrating the utility of these organoids for pathogen co-culture experiments. Finally, the polarity in the abomasal and ileal organoids can be inverted to make the apical surface directly accessible to pathogens or their products, here shown by infection of apical-out organoids with the zoonotic enteric bacterial pathogen Salmonella enterica serovar Typhimurium. In summary, we report a simple and reliable in vitro culture system for generation and maintenance of small ruminant intestinal and gastric organoids. In line with 3Rs principals, use of such organoids will reduce and replace animals in host-pathogen research.


Assuntos
Intestinos , Organoides , Animais , Interações Hospedeiro-Patógeno , Ruminantes , Ovinos , Estômago
18.
Vaccines (Basel) ; 8(3)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932979

RESUMO

Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide and the handling or consumption of contaminated poultry meat is the key source of infection. C. jejuni proteins FlpA and SodB and glycoconjugates containing the C. jejuni N-glycan have been separately reported to be partially protective vaccines in chickens. In this study, two novel glycoproteins generated by protein glycan coupling technology-G-FlpA and G-SodB (with two and three N-glycosylation sites, respectively)-were evaluated for efficacy against intestinal colonisation of chickens by C. jejuni strain M1 relative to their unglycosylated variants. Two independent trials of the same design were performed with either a high challenge dose of 107 colony-forming units (CFU) or a minimum challenge dose of 102 CFU of C. jejuni M1. While antigen-specific serum IgY was detected in both trials, no reduction in caecal colonisation by C. jejuni M1 was observed and glycosylation of vaccine antigens had no effect on the outcome. Our data highlight inconsistencies in the outcome of C. jejuni vaccination trials that may reflect antigen-, challenge strain-, vaccine administration-, adjuvant- and chicken line-specific differences from previously published studies. Refinement of glycoconjugate vaccines by increasing glycosylation levels or using highly immunogenic protein carriers could improve their efficacy.

19.
Dev Comp Immunol ; 105: 103586, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31870792

RESUMO

Macrophage colony-stimulating factor (CSF1) is an essential growth factor to control the proliferation, differentiation and survival of cells of the macrophage lineage in vertebrates. We have previously produced a recombinant chicken CSF1-Fc fusion protein and administrated it to birds which produced a substantial expansion of tissue macrophage populations. To further study the biology of CSF1 in the chicken, here we generated anti-chicken CSF1 antibodies (ROS-AV181 and 183) using CSF1-Fc as an immunogen. The specific binding of each monoclonal antibody was confirmed by ELISA, Western blotting and immunohistochemistry on tissue sections. Using the anti-CSF1 antibodies, we show that chicken bone marrow derived macrophages (BMDM) express CSF1 on their surface, and that the level appears to be regulated further by exogenous CSF1. By capture ELISA circulating CSF1 levels increased transiently in both layer and broiler embryos around the day of hatch. The levels of CSF1 in broilers was higher than in layers during the first week after hatch. Antibody ROS-AV183 was able to block CSF1 biological activity in vitro and treatment of hatchlings using this neutralising antibody in vivo impacted on some tissue macrophage populations, but not blood monocytes. After anti-CSF1 treatment, CSF1R-transgene reporter expressing cells were reduced in the bursa of Fabricius and cecal tonsil and TIM4+ Kupffer cells in the liver were almost completely ablated. Anti-CSF1 treatment also produced a reduction in overall bone density, trabecular volume and TRAP+ osteoclasts. Our novel neutralising antibody provides a new tool to study the roles of CSF1 in birds.


Assuntos
Anticorpos Bloqueadores/isolamento & purificação , Anticorpos/isolamento & purificação , Proteínas Aviárias/genética , Bolsa de Fabricius/metabolismo , Galinhas/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/fisiologia , Animais , Proteínas Aviárias/metabolismo , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Fragmentos Fc das Imunoglobulinas/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Recombinantes de Fusão/genética
20.
mBio ; 10(2)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015322

RESUMO

In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system.IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/fisiologia , Processamento de Proteína Pós-Traducional , Proteostase , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/patogenicidade , Galinhas , Cromatografia Líquida , Glicoproteínas/análise , Glicosilação , Proteoma/análise , Espectrometria de Massas em Tandem , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa