Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 22(10): 3392-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542194

RESUMO

A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFß receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFß induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.


Assuntos
Cicatriz/prevenção & controle , Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Pele/efeitos dos fármacos , Animais , Modelos Moleculares , Fosforilação , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I
2.
Br J Pharmacol ; 138(3): 427-34, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12569067

RESUMO

1 The human 5-HT(2C) receptor, when expressed heterologously in various mammalian cell lines (HEK293, SH-EP and NIH-3T3) at various receptor densities (6 to 45 pmol mg(-1) protein), mediates robust agonist-induced GTPgamma(35)S binding from coupling to G(i) subtypes of G proteins, in addition to G(q/11). Such a phenotype, however, was not seen with the human 5-HT(2A) and 5-HT(2B) receptors, indicating their common pathway with 5-HT(2C) limited to G(q/11), not including G(i). 2 Because intracellular regions are largely responsible for signalling pathways, we prepared the chimeras of the 5-HT(2A) and 5-HT(2B) receptors where the second and third intracellular loops, and the C-terminal region were replaced with the 5-HT(2C) counterparts. 3 The chimeras showed robust agonist-induced GTPgamma(35)S binding. Relative intrinsic efficacies of agonists from the GTPgamma(35)S binding were nearly identical to the reported values for their parent receptors as measured with Ca(2+) or [(3)H]-inositol phosphate accumulation. Also the chimeras displayed the same ligand-binding properties as the parent receptors. 4 We conclude that the phenotype of agonist-induced GTPgamma(35)S binding is unique to 5-HT(2C) among the 5-HT(2) receptor family, and is transferable to 5-HT(2A) and 5-HT(2B), upon swapping intracellular sequences, without altering their receptor pharmacology.


Assuntos
Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Animais , Ligação Competitiva , Linhagem Celular , Clonagem Molecular , Humanos , Ligantes , Camundongos , Fenótipo , Reação em Cadeia da Polimerase , Ligação Proteica , Ensaio Radioligante , Receptor 5-HT2A de Serotonina , Receptor 5-HT2B de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Neurosci Lett ; 334(1): 49-52, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12431773

RESUMO

The neuronal nicotinic acetylcholine receptor subunit, alpha7, can form homopentameric receptor/ion channel complexes. Potential contributions of its N-terminal region to homomeric interactions were investigated, in comparison with the corresponding region of an analogous heteromeric subunit, alpha3. Recombinant chimeras were prepared upon engineering the N-terminal alpha7 (M1-V224) or alpha3 (M1-S232) sequence into the background of another homomeric mouse 5-hydroxytryptamine3 (5-HT)(3) receptor. The alpha7/5-HT(3) chimera, when expressed heterologously in a human epithelial cell line, SH-EP1, robustly expressed alpha-bungarotoxin binding sites as homooligomers while the alpha3/5-HT(3) did not produce epibatidine (non-selective ligand) binding sites, and did not interfere the alpha7/5-HT3 phenotype, upon co-expression. Yeast two hybrid assays with the N-terminal regions showed positive responses between alpha7:alpha7, but not between alpha7:alpha3 and alpha3:alpha3. Similar assays with the alpha7 N-terminal region and its five smaller fragments (G23-N46, D47-N90, V91-N133, S134-M182and Q183-V224) revealed that the G23-N46 sequence is involved in homomeric interactions. Replacement of the corresponding region of the alpha3/5-HT(3) chimera with the alpha7 G23-N46 sequence conferred a dominant negative role on the chimera, by abolishing the alpha7/5-HT(3) phenotype. These results support the view that the G23-N46 portion of the alpha7 N-terminal region may contribute to receptor homooligomerizations.


Assuntos
Fragmentos de Peptídeos/química , Conformação Proteica , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Linhagem Celular , Quimera , Células Epiteliais/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Leveduras
4.
Naunyn Schmiedebergs Arch Pharmacol ; 379(5): 461-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19057895

RESUMO

The type 2 serotonin (5-HT(2)) receptor subfamily is known to couple to phosphoinositide hydrolysis (PI) and the subsequent mobilization of intracellular Ca(2+), as well as the release of arachidonic acid (AA). Less is known of 5-HT(2)-mediated activation of the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK1/2) signaling. The present study measured the relative efficacies and potencies of 5-HT agonists to activate ERK2 in non-neuronal cells expressing recombinant human 5-HT(2A), 5-HT(2B), and 5-HT(2C(ISV)) receptors. 5-HT agonists stimulated ERK2 activity via all three 5-HT(2) subtypes. There were no meaningful differences in the potencies or relative efficacies of these agonists to affect ERK2 activity vs. PI accumulation or Ca(2+) mobilization, suggesting that these pathways may be sequentially linked. Indeed, ERK2 activity was very sensitive to PKC inhibition and calcium chelation and insensitive to tyrosine kinase and PI-3-kinase inhibition. 5-HT(2) receptors efficiently couple to MAPK activation via sequential PI hydrolysis, and Ca(2+) mobilization. This profile differs from reports of "agonist-directed trafficking of receptor stimulus" between PI/Ca(2+) and AA pathways activated by 5-HT(2) receptors.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Western Blotting , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Ativação Enzimática , Humanos , Fosfatidilinositóis/metabolismo , Ligação Proteica , Ensaio Radioligante , Receptor 5-HT2A de Serotonina/biossíntese , Receptor 5-HT2B de Serotonina/biossíntese , Receptor 5-HT2C de Serotonina/biossíntese , Proteínas Recombinantes/biossíntese , Agonistas do Receptor 5-HT2 de Serotonina
5.
Mol Pharmacol ; 64(1): 78-84, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12815163

RESUMO

The human 5-hydroxytryptamine-2C (5-HT2C) receptor has been the target of potential anxiolytics and antiobesity drugs, and its positive allosteric modulator was discovered to be l-threo-alpha-d-galacto-octopyranoside, methyl-7-chloro-6,7,8-trideoxy-6-[[(4-undecyl-2-piperidinyl)carbonyl]amino]-1-thiomonohydrochloride (2S-cis) (PNU-69176E). The drug at low micromolar concentrations (<25 microM) markedly enhanced [3H]5-HT binding (more than 300%) by increasing its affinity for low-affinity sites but with no appreciable effect on antagonist ([3H]mesulergine) binding. Functionally, PNU-69176E alone rendered receptors constitutively active, producing the pheno-types of 5-HT-activated receptors, as measured with mesulergine-sensitive guanosine 5'-O-(3-[35S]thio)triphosphate binding, transient inositol 1,4,5-triphosphate release, and [3H]inositol phosphate accumulation. These actions of PNU-69176E were observed with the human 5-HT2C receptor expressed in several mammalian cell lines (human embryonic kidney 293, NIH3T3, and SH-EP) at variable receptor densities (6 to 45 pmol/mg of protein), but not with analogous 5-HT and dopamine receptors (human 5-HT2A, 5-HT2B, 5-HT6, 5-HT7, and dopamine D2-long and D3 receptors). Structurally, PNU-69176E consists of a long alkyl chain and a polar moiety, including the alpha-d-galactopyranoside. Its analogs with shorter alkyl chains (methyl to n-hexyl instead of n-undecyl group) failed to enhance [3H]5-HT binding, and also long alkyl amides are without allosteric modulation. We propose that PNU-69176E may represent a new class of membrane receptor modulators, which probably need a long alkyl chain as a membrane anchor and target a selective polar head group to receptor modulatory sites near the membrane surface.


Assuntos
Regulação Alostérica , Galactosídeos/farmacologia , Piperidinas/farmacologia , Receptores de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Animais , Células Cultivadas , Humanos , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa