Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 16(10): e1009006, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057440

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) vGPCR is a constitutively active G protein-coupled receptor that subverts proliferative and inflammatory signaling pathways to induce cell transformation in Kaposi's sarcoma. Cyclooxygenase-2 (COX-2) is an inflammatory mediator that plays a key regulatory role in the activation of tumor angiogenesis. Using two different transformed mouse models and tumorigenic full KSHV genome-bearing cells, including KSHV-Bac16 based mutant system with a vGPCR deletion, we demostrate that vGPCR upregulates COX-2 expression and activity, signaling through selective MAPK cascades. We show that vGPCR expression triggers signaling pathways that upregulate COX-2 levels due to a dual effect upon both its gene promoter region and, in mature mRNA, the 3'UTR region that control mRNA stability. Both events are mediated by signaling through ERK1/2 MAPK pathway. Inhibition of COX-2 in vGPCR-transformed cells impairs vGPCR-driven angiogenesis and treatment with the COX-2-selective inhibitory drug Celecoxib produces a significant decrease in tumor growth, pointing to COX-2 activity as critical for vGPCR oncogenicity in vivo and indicating that COX-2-mediated angiogenesis could play a role in KS tumorigenesis. These results, along with the overexpression of COX-2 in KS lesions, define COX-2 as a potential target for the prevention and treatment of KSHV-oncogenesis.


Assuntos
Herpesvirus Humano 8/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Sarcoma de Kaposi/irrigação sanguínea , Animais , Carcinogênese , Transformação Celular Neoplásica/genética , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/genética , Herpesvirus Humano 8/genética , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/virologia , Oncogenes , Receptores Acoplados a Proteínas G/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Ativação Transcricional
2.
Arch Virol ; 162(9): 2565-2577, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28474225

RESUMO

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Exossomos/fisiologia , HIV-1/fisiologia , Ativação Viral/fisiologia , Adulto , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Técnicas de Cocultura , Quimioterapia Combinada , Infecções por HIV/virologia , Humanos , Masculino
3.
Retrovirology ; 12: 87, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502902

RESUMO

BACKGROUND: Completion of HIV life cycle in CD4(+) T lymphocytes needs cell activation. We recently reported that treatment of resting CD4(+) T lymphocytes with exosomes produced by HIV-1 infected cells induces cell activation and susceptibility to HIV replication. Here, we present data regarding the effects of these exosomes on cells latently infected with HIV-1. RESULTS: HIV-1 latently infecting U937-derived U1 cells was activated upon challenge with exosomes purified from the supernatant of U937 cells chronically infected with HIV-1. This effect was no more detectable when exosomes from cells infected with HIV-1 strains either nef-deleted or expressing a functionally defective Nef were used, indicating that Nef is the viral determinant of exosome-induced HIV-1 activation. Treatment with either TAPI-2, i.e., a specific inhibitor of the pro-TNFα-processing ADAM17 enzyme, or anti-TNFα Abs abolished HIV-1 activation. Hence, similar to what previously demonstrated for the exosome-mediated activation of uninfected CD4(+) T lymphocytes, the Nef-ADAM17-TNFα axis is part of the mechanism of latent HIV-1 activation. It is noteworthy that these observations have been reproduced using: (1) primary CD4(+) T lymphocytes latently infected with HIV-1; (2) exosomes from both primary CD4(+) T lymphocytes and macrophages acutely infected with HIV-1; (3) co-cultures of HIV-1 acutely infected CD4(+) T lymphocytes and autologous lymphocytes latently infected with HIV-1, and (4) exosomes from cells expressing a defective HIV-1. CONCLUSIONS: Our results strongly suggest that latent HIV-1 can be activated by TNFα released by cells upon ingestion of exosomes released by infected cells, and that this effect depends on the activity of exosome-associated ADAM17. These pieces of evidence shed new light on the mechanism of HIV reactivation in latent reservoirs, and might also be relevant to design new therapeutic interventions focused on HIV eradication.


Assuntos
Exossomos/fisiologia , HIV-1/fisiologia , Ativação Viral , Latência Viral , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM17 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Técnicas de Cocultura , Exossomos/química , Exossomos/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Ativação Viral/genética , Latência Viral/genética , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
4.
J Virol ; 88(19): 11529-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056899

RESUMO

UNLABELLED: Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We found that the expression of HIV-1 Nef in exosome-producing cells is both necessary and sufficient for cell activation as well as HIV-1 replication in target CD4+ T lymphocytes. We also identified a Nef domain important for the effects we observed, i.e., the 62EEEE65 acidic cluster domain. In addition, we observed that ADAM17, i.e., a disintegrin and metalloprotease converting pro-tumor necrosis factor alpha (TNF-α) in its mature form, associates with exosomes from HIV-1-infected cells, and plays a key role in the HIV-1 replication in quiescent CD4+ T lymphocytes. Treatment with an inhibitor of ADAM17 abolished both activation and HIV-1 replication in resting CD4+ T lymphocytes. TNF-α is the downstream effector of ADAM17 since the treatment of resting lymphocytes with anti-TNF-α antibodies blocked the HIV-1 replication. The data presented here are consistent with a model where Nef induces intercellular communication through exosomes to activate bystander quiescent CD4+ T lymphocytes, thus stimulating viral spread. IMPORTANCE: Overall, our findings support the idea that HIV evolved to usurp the exosome-based intercellular communication network to favor its spread in infected hosts.


Assuntos
Proteínas ADAM/genética , Linfócitos T CD4-Positivos/virologia , Exossomos/imunologia , HIV-1/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/imunologia , Proteína ADAM17 , Anticorpos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular , Células Cultivadas , Cultura em Câmaras de Difusão , Inibidores Enzimáticos/farmacologia , Exossomos/química , Regulação da Expressão Gênica , Células HEK293 , HIV-1/imunologia , Humanos , Ativação Linfocitária , Estrutura Terciária de Proteína , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
5.
Cancer Cell ; 11(3): 245-58, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17349582

RESUMO

Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial-lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but they didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to nontumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene upregulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS.


Assuntos
Modelos Animais de Doenças , Herpesvirus Humano 8 , Sarcoma de Kaposi/patologia , Angiopoietinas/metabolismo , Animais , Antígenos Virais/metabolismo , Células da Medula Óssea/patologia , Linhagem da Célula , Transformação Celular Neoplásica , Transformação Celular Viral , Células Cultivadas , Cromossomos Artificiais Bacterianos , Células Endoteliais/patologia , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Retrovirology ; 11: 46, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24924541

RESUMO

BACKGROUND: A relevant burden of defective HIV-1 genomes populates PBMCs from HIV-1 infected patients, especially during HAART treatment. These viral genomes, although unable to codify for infectious viral particles, can express viral proteins which may affect functions of host cells as well as bystander ones. Cells expressing defective HIV-1 have a lifespan longer than that of cells producing infectious particles. Hence, their interaction with other cell types, including resting lymphocytes, is expected to occur frequently in tissues where HIV actively replicates. We investigated the effects of the expression of a prototype of functionally defective HIV-1 on bystander, unstimulated CD4+ T lymphocytes. RESULTS: We observed that unstimulated human primary CD4+ T lymphocytes were activated and became permissive for HIV-1 replication when co-cultivated with cells expressing a functionally defective HIV-1 (F12/Hut-78 cells). This effect depended on the presence in F12/Hut-78 supernatants of nanovesicles we identified as exosomes. By inspecting the underlying mechanism, we found that ADAM17, i.e., a disintegrin and metalloprotease converting pro-TNF-α in its mature form, associated with exosomes from F12/Hut-78 cells, and played a key role in the HIV-1 replication in unstimulated CD4+ T lymphocytes. In fact, the treatment with an inhibitor of ADAM17 abolished both activation and HIV-1 replication in unstimulated CD4+ T lymphocytes. TNF-α appeared to be the downstream effector of ADAM17 since the treatment of unstimulated lymphocytes with antibodies against TNF-α or its receptors blocked the HIV-1 replication. Finally, we found that the expression of NefF12 in exosome-producing cells was sufficient to induce the susceptibility to HIV-1 infection in unstimulated CD4+ T lymphocytes. CONCLUSIONS: Exosomes from cells expressing a functionally defective mutant can induce cell activation and HIV-1 susceptibility in unstimulated CD4+ T lymphocytes. This evidence highlights the relevance for AIDS pathogenesis of the expression of viral products from defective HIV-1 genomes.


Assuntos
Linfócitos T CD4-Positivos/virologia , Exossomos , HIV-1/fisiologia , Ativação Linfocitária , Replicação Viral , Proteínas ADAM/fisiologia , Proteína ADAM17 , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos , Interleucina-2/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
7.
Angiogenesis ; 17(4): 831-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24719186

RESUMO

In addition to contrast human immunodeficiency virus (HIV) replication, the HIV protease inhibitors (HIV-PI) have reduced tumour incidence or clinical progression in infected patients. In this regard, we have previously shown that, independently of its anti-viral activity, the HIV-PI indinavir (IDV) directly blocks matrix metalloproteinase (MMP)-2 proteolytic activation, thus efficiently inhibiting tumour angiogenesis in vitro, in animal models, and in humans. Herein we investigated the molecular mechanism for IDV anti-angiogenic effect. We found that treatment of human primary endothelial cells with therapeutic IDV concentrations decreases the expression of membrane type (MT)1-MMP, which is the major activator of MMP-2. This occurs for both the constitutive expression of MT1-MMP and that up-regulated by angiogenic factors. In either cases, reduction of MT1-MMP levels by IDV is preceded by the inhibition of the binding of the specificity protein (Sp)1 transcription factor to the promoter region of the MT1-MMP gene in endothelial cell nuclei. As MT1-MMP is key for tumour angiogenesis, these results support the use of IDV or its derivatives in anti-cancer therapy. This is recommended by the low toxicity of the drug, and the large body of data on its pharmacokinetic.


Assuntos
Células Endoteliais/metabolismo , Regulação Enzimológica da Expressão Gênica , Inibidores da Protease de HIV/química , Indinavir/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Animais , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
NPJ Vaccines ; 8(1): 83, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268624

RESUMO

Induction of effective immunity in the lungs should be a requisite for any vaccine designed to control the severe pathogenic effects generated by respiratory infectious agents. We recently provided evidence that the generation of endogenous extracellular vesicles (EVs) engineered for the incorporation of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) protein induced immunity in the lungs of K18-hACE2 transgenic mice, which then can survive the lethal virus infection. However, nothing is known about the ability of the N-specific CD8+ T cell immunity in controlling viral replication in the lungs, a major pathogenic signature of severe disease in humans. To fill the gap, we investigated the immunity generated in the lungs by N-engineered EVs in terms of induction of N-specific effectors and resident memory CD8+ T lymphocytes before and after virus challenge carried out three weeks and three months after boosting. At the same time points, viral replication extents in the lungs were evaluated. Three weeks after the second immunization, virus replication was reduced in mice best responding to vaccination by more than 3-logs compared to the control group. The impaired viral replication matched with a reduced induction of Spike-specific CD8+ T lymphocytes. The antiviral effect appeared similarly strong when the viral challenge was carried out 3 months after boosting, and associated with the persistence of N-specific CD8+ T-resident memory lymphocytes. In view of the quite low mutation rate of the N protein, the present vaccine strategy has the potential to control the replication of all emerging variants.

9.
Vaccines (Basel) ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766110

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 enters the host by infecting nasal ciliated cells. Then, the virus can spread towards the oropharyngeal cavity and the pulmonary tissues. The antiviral adaptive immunity is promptly induced in response to the virus's detection, with virus-specific T-lymphocytes appearing before antiviral antibodies. Both the breadth and potency of antiviral CD8+ T-cell immunity have a key role in containing viral spread and disease severity. Current anti-SARS-CoV-2 vaccines do not impede the virus's replication in the upper respiratory tract, and there is consensus on the fact that the best potency of the antiviral immune response in both blood and the upper respiratory tract can be reached upon infection in vaccinees (i.e., breakthrough infection). However, whether the antiviral CD8+ T-cells developing in response to the breakthrough infection in the upper respiratory tract diffuse to the lungs is also still largely unknown. To fill the gap, we checked the CD8+ T-cell immunity elicited after infection of K18-hACE2 transgenic mice both at 3 weeks and 3 months after anti-spike vaccination. Virus-specific CD8+ T-cell immunity was monitored in both blood and the lungs before and after infection. By investigating the de novo generation of the CD8+ T-cells specific for SARS-CoV-2 viral proteins, we found that both membrane (M) and/or nucleocapsid (N)-specific CD8+ T-cells were induced at comparable levels in the blood of both unvaccinated and vaccinated mice. Conversely, N-specific CD8+ T-cells were readily found in the lungs of the control mice but were either rare or absent in those of vaccinated mice. These results support the idea that the hybrid cell immunity developing after asymptomatic/mild breakthrough infection strengthens the antiviral cell immunity in the lungs only marginally, implying that the direct exposition of viral antigens is required for the induction of an efficient antiviral cell immunity in the lungs.

10.
Cancer Cell ; 3(2): 131-43, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12620408

RESUMO

The G protein-coupled receptor oncogene (vGPCR) of the Kaposi's sarcoma (KS) associated herpesvirus (KSHV), an oncovirus implicated in angioproliferative neoplasms, induces angiogenesis by VEGF secretion. Accordingly, we found that expression of vGPCR in human umbilical vein endothelial cells (HUVEC) leads to immortalization with constitutive VEGF receptor-2/ KDR expression and activation. vGPCR immortalization was associated with anti-senescence mediated by alternative lengthening of telomeres and an anti-apoptotic response mediated by vGPCR constitutive signaling and KDR autocrine signaling leading to activation of the PI3K/AKT pathway. In the presence of the KS growth factor VEGF, this mechanism can sustain suppression of signaling by the immortalizing gene. We conclude that vGPCR can cause an oncogenic immortalizing event and recapitulate aspects of the KS angiogenic phenotype in human endothelial cells, pointing to this gene as a pathogenic determinant of KSHV.


Assuntos
Endotélio Vascular/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Quimiocinas/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Virais/fisiologia , Apoptose , Transformação Celular Neoplásica , Células Cultivadas , Fatores de Crescimento Endotelial/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Herpesvirus Humano 8/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfocinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Retroviridae/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Telomerase/metabolismo , Telômero/metabolismo , Veias Umbilicais , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
11.
Methods Mol Biol ; 2504: 177-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467287

RESUMO

Healthy cells constitutively release lipid bilayered vesicles of different sizes and recognizing different biogenesis, collectively referred to as extracellular vesicles (EVs). EVs can be distinguished in exosomes and microvesicles. Biological and biomedical research on EVs is an emerging field that is rapidly growing. Many EV features including biogenesis, cell uptake, and functions still require unambiguous elucidation. Nevertheless, it has been well established that EVs are involved in communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Here, we summarize most recent findings regarding biogenesis, structure, and functions of both exosomes and microvesicles. In addition, the use of EVs as delivery tools to induce CD8+ T cell immunity is addressed compared to current designs exploiting enveloped viral vectors and virus-like particles. Finally, we describe a both safe and original approach conceived for the induction of strong CTL immunity against antigens uploaded in EVs constitutively released by muscle cells.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Transporte Biológico , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Substâncias Macromoleculares/metabolismo
12.
Vaccines (Basel) ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891224

RESUMO

We propose an innovative anti-SARS-CoV-2 immune strategy based on extracellular vesicles (EVs) inducing an anti-SARS-CoV-2 N CD8+ T cytotoxic lymphocyte (CTL) immune response. We previously reported that the SARS-CoV-2 N protein can be uploaded at high levels in EVs upon fusion with Nefmut, i.e., a biologically inactive HIV-1 Nef mutant incorporating into EVs at quite high levels. Here, we analyze the immunogenic properties in human cells of EVs engineered with SARS-CoV-2 N fused at the C-terminus of either Nefmut or a deletion mutant of Nefmut referred to as NefmutPL. The analysis of in vitro-produced EVs has supported the uploading of N protein when fused with truncated Nefmut. Mice injected with DNA vectors expressed each fusion protein developed robust SARS-CoV-2 N-specific CD8+ T cell immune responses. When ex vivo human dendritic cells were challenged with EVs engineered with either fusion products, the induction of a robust N-specific CTL activity, as evaluated by both CD107a and trogocytosis assays, was observed. Through these data we achieved the proof-of-principle that engineered EVs can be instrumental to elicit anti-SARS-CoV-2 CTL immune response in human cells. This achievement represents a mandatory step towards the upcoming experimentations in pre-clinical models focused on intranasal administration of N-engineered EVs.

13.
Viruses ; 14(2)2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35215922

RESUMO

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , Vesículas Extracelulares/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/genética , COVID-19/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinação
14.
Int J Cancer ; 128(1): 82-93, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617515

RESUMO

Human immunodeficiency virus protease inhibitors (HIV-PIs), such as indinavir and saquinavir, have been shown to block angiogenesis and tumor cell invasion and to induce tumor cell apoptosis and growth arrest, respectively, both in vitro and in vivo. These findings have suggested that HIV-PIs or their analogues can be used as antitumor drugs. To this regard, indinavir and saquinavir were assessed for their ability to inhibit in vivo the growth of highly prevalent human tumors, such as lung, breast, colon and hepatic adenocarcinomas. We show here that both HIV-PIs significantly inhibited the growth of all adenocarcinomas tested in the mice model. This was not mediated by effects on proteasome-dependent cell growth arrest or on apoptosis but by the block of angiogenesis and matrix metalloproteinase activity. Accordingly, therapeutic steadystate concentrations of indinavir or saquinavir were highly effective in inhibiting invasion of tumor cells in vitro. In contrast, growth arrest was induced only by high concentrations of saquinavir that are not reached or are only transiently present in plasma of treated patients, likely through a proteasome-mediated mechanism. These data suggest that HIV-PIs or their analogues, characterized by a better biodistribution and lower toxicity, may represent a new class of antitumor drugs capable of targeting both matrix metalloproteinases and the proteasome for a most effective antitumor therapy.


Assuntos
Inibidores da Protease de HIV/farmacologia , Inibidores de Metaloproteinases de Matriz , Neoplasias/prevenção & controle , Neovascularização Patológica/prevenção & controle , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Imuno-Histoquímica , Indinavir/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saquinavir/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Vaccines (Basel) ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801926

RESUMO

Most advanced vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 are designed to induce antibodies against spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This is a new vaccination approach based on intramuscular injection of DNA expression vectors coding for a biologically inactive HIV-1 Nef protein (Nefmut) with an unusually high efficiency of incorporation into EVs, even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells can freely circulate into the body and are internalized by antigen-presenting cells. Therefore, EV-associated antigens can be cross-presented to prime antigen-specific CD8+ T-cells. To apply this technology to a strategy of anti-SARS-CoV-2 vaccine, we designed DNA vectors expressing the products of fusion between Nefmut and different viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. We provided evidence that all fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity became detectable in spleens and, most important, in lung airways. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lungs. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed for new anti-SARS-CoV-2 vaccine strategies.

16.
Cancers (Basel) ; 13(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066801

RESUMO

We developed an innovative method to induce antigen-specific CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This approach employs a DNA vector expressing a mutated HIV-1 Nef protein (Nefmut) deprived of the anti-cellular effects typical of the wild-type isoform, meanwhile showing an unusual efficiency of incorporation into EVs. This function persists even when foreign antigens are fused to its C-terminus. In this way, Nefmut traffics large amounts of antigens fused to it into EVs spontaneously released by the recipient cells. We previously provided evidence that mice injected with a DNA vector expressing the Nefmut/HPV16-E7 fusion protein developed an E7-specific CTL immune response as detected 2 weeks after the second immunization. Here, we extended and optimized the anti-HPV16 CD8+ T cell immune response induced by the endogenously engineered EVs, and evaluated the therapeutic antitumor efficacy over time. We found that the co-injection of DNA vectors expressing Nefmut fused with E6 and E7 generated a stronger anti-HPV16 immune response compared to that observed in mice injected with the single vectors. When HPV16-E6 and -E7 co-expressing tumor cells were implanted before immunization, all mice survived at day 44, whereas no mice injected with either void or Nefmut-expressing vectors survived until day 32 after tumor implantation. A substantial part of immunized mice (7 out of 12) cleared the tumor. When the cured mice were re-challenged with a second tumor cell implantation, none of them developed tumors. Both E6- and E7-specific CD8+ T immunities were still detectable at the end of the observation time. We concluded that the immunity elicited by engineered EVs, besides counteracting and curing already developed tumors, was strong enough to guarantee the resistance to additional tumor attacks. These results can be of relevance for the therapy of both metastatic and relapsing tumors.

17.
Vaccines (Basel) ; 9(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921215

RESUMO

Intramuscular injection of DNA vectors expressing the extracellular vesicle (EV)-anchoring protein Nefmut fused at its C-terminus to viral and tumor antigens elicit a potent, effective, and anti-tolerogenic CD8+ T cell immunity against the heterologous antigen. The immune response is induced through the production of EVs incorporating Nefmut-derivatives released by muscle cells. In the perspective of a possible translation into the clinic of the Nefmut-based vaccine platform, we aimed at increasing its safety profile by identifying the minimal part of Nefmut retaining the EV-anchoring protein property. We found that a C-terminal deletion of 29-amino acids did not affect the ability of Nefmut to associate with EVs. The EV-anchoring function was also preserved when antigens from both HPV16 (i.e., E6 and E7) and SARS-CoV-2 (i.e., S1 and S2) were fused to its C-terminus. Most important, the Nefmut C-terminal deletion did not affect levels, quality, and diffusion at distal sites of the antigen-specific CD8+ T immunity. We concluded that the C-terminal Nefmut truncation does not influence stability, EV-anchoring, and CD8+ T cell immunogenicity of the fused antigen. Hence, the C-terminal deleted Nefmut may represent a safer alternative to the full-length isoform for vaccines in humans.

18.
Pharmaceutics ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526949

RESUMO

Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a novel targeting strategy based on the endogenous engineering of extracellular vesicles/exosomes constitutively released by cells of the central nervous system.

19.
Vaccines (Basel) ; 8(2)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456079

RESUMO

We recently described a cytotoxic CD8+ T lymphocyte (CTL) vaccine platform based on the intramuscular (i.m.) injection of DNA eukaryotic vectors expressing antigens of interest fused at the C-terminus of HIV-1 Nefmut, i.e., a functionally defective mutant that is incorporated at quite high levels into exosomes/extracellular vesicles (EVs). This system has been proven to elicit strong CTL immunity against a plethora of both viral and tumor antigens, as well as inhibit both transplantable and orthotopic tumors in mice. However, a number of open issues remain regarding the underlying mechanism. Here we provide evidence that hindering the uploading into EVs of Nefmut-derived products by removing the Nefmut N-terminal fatty acids leads to a dramatic reduction of the downstream antigen-specific CD8+ T-cell activation after i.m. injection of DNA vectors in mice. This result formally demonstrates that the generation of engineered EVs is part of the mechanism underlying the in vivo induced CD8+ T-cell immunogenicity. Gaining new insights on the EV-based vaccine platform can be relevant in view of its possible translation into the clinic to counteract both chronic and acute infections as well as tumors.

20.
Cytokine Growth Factor Rev ; 51: 40-48, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31926807

RESUMO

HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.


Assuntos
Linfócitos T CD4-Positivos/virologia , Comunicação Celular/imunologia , Reservatórios de Doenças/virologia , Vesículas Extracelulares/fisiologia , Infecções por HIV/imunologia , Latência Viral , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Espaço Extracelular , Infecções por HIV/tratamento farmacológico , HIV-1 , Humanos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa