Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348054

RESUMO

Relatively few virulence genes have been identified in pathogenic mycoplasmas, so we used signature-tagged mutagenesis to identify mutants of the avian pathogen Mycoplasma gallisepticum with a reduced capacity to persist in vivo and compared the levels of virulence of selected mutants in experimentally infected chickens. Four mutants had insertions in one of the two incomplete oppABCDF operons, and a further three had insertions in distinct hypothetical genes, two containing peptidase motifs and one containing a member of a gene family. The three hypothetical gene mutants and the two with insertions in oppD1 were used to infect chickens, and all five were shown to have a reduced capacity to induce respiratory tract lesions. One oppD1 mutant and the MGA_1102 and MGA_1079 mutants had a greatly reduced capacity to persist in the respiratory tract and to induce systemic antibody responses against M. gallisepticum The other oppD1 mutant and the MGA_0588 mutant had less capacity than the wild type to persist in the respiratory tract but did elicit systemic antibody responses. Although M. gallisepticum carries two incomplete opp operons, one of which has been acquired by horizontal gene transfer, our results suggest that one of the copies of oppD may be required for full expression of virulence. We have also shown that three hypothetical genes, two of which encode putative peptidases, may be required for full expression of virulence in M. gallisepticum. None of these genes has previously been shown to influence virulence in pathogenic mycoplasmas.


Assuntos
Proteínas de Bactérias/metabolismo , Galinhas/microbiologia , Mutagênese Insercional/genética , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/patogenicidade , Doenças das Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/microbiologia , Doenças das Aves Domésticas/genética , Virulência/genética , Fatores de Virulência/genética
2.
Microbiology (Reading) ; 159(Pt 7): 1459-1470, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23657682

RESUMO

There is limited understanding of the molecular basis of virulence in the important avian pathogen Mycoplasma gallisepticum. To define genes that may be involved in colonization of chickens, a collection of mutants of the virulent Ap3AS strain of M. gallisepticum were generated by signature-tagged transposon mutagenesis. The collection included mutants with single insertions in the genes encoding the adhesin GapA and the cytadherence-related protein CrmA, and Western blotting confirmed that these mutants did not express these proteins. In two separate in vivo screenings, two GapA-deficient mutants (ST mutants 02-1 and 06-1) were occasionally recovered from birds, suggesting that GapA expression may not always be essential for persistence of strain Ap3AS. CrmA-deficient ST mutant 33-1 colonized birds poorly and had reduced virulence, indicating that CrmA was a significant virulence factor, but was not absolutely essential for colonization. ST mutant 04-1 contained a single transposon insertion in malF, a predicted ABC sugar transport permease, and could not be reisolated even when inoculated by itself into a group of birds, suggesting that expression of MalF was essential for persistence of M. galliseptium strain Ap3AS in infected birds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/patogenicidade , Doenças das Aves Domésticas/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galinhas/microbiologia , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese Insercional , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/crescimento & desenvolvimento , Mycoplasma gallisepticum/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
BMC Microbiol ; 12: 138, 2012 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-22770122

RESUMO

BACKGROUND: Mycoplasma gallisepticum is a major poultry pathogen and causes severe economic loss to the poultry industry. In mycoplasmas lipoproteins are abundant on the membrane surface and play a critical role in interactions with the host, but tools for exploring their molecular biology are limited. RESULTS: In this study we examined whether the alkaline phosphatase gene (phoA ) from Escherichia coli could be used as a reporter in mycoplasmas. The promoter region from the gene for elongation factor Tu (ltuf) and the signal and acylation sequences from the vlhA 1.1 gene, both from Mycoplasma gallisepticum , together with the coding region of phoA , were assembled in the transposon-containing plasmid pISM2062.2 (pTAP) to enable expression of alkaline phosphatase (AP) as a recombinant lipoprotein. The transposon was used to transform M. gallisepticum strain S6. As a control, a plasmid containing a similar construct, but lacking the signal and acylation sequences, was also produced (pTP) and also introduced into M. gallisepticum . Using a colorimetric substrate for detection of alkaline phosphatase activity, it was possible to detect transformed M. gallisepticum . The level of transcription of phoA in organisms transformed with pTP was lower than in those transformed with pTAP, and alkaline phosphatase was not detected by immunoblotting or enzymatic assays in pTP transformants, eventhough alkaline phosphatase expression could be readily detected by both assays in pTAP transformants. Alkaline phosphatase was shown to be located in the hydrophobic fraction of transformed mycoplasmas following Triton X-114 partitioning and in the membrane fraction after differential fractionation. Trypsin proteolysis confirmed its surface exposure. The inclusion of the VlhA lipoprotein signal sequence in pTAP enabled translocation of PhoA and acylation of the amino terminal cysteine moiety, as confirmed by the effect of treatment with globomycin and radiolabelling studies with [14C]palmitate. PhoA could be identified by mass-spectrometry after separation by two-dimensional electrophoresis. CONCLUSION: This is the first study to express PhoA as a lipoprotein in mycoplasmas. The pTAP plasmid will facilitate investigations of lipoproteins and protein translocation across the cell membrane in mycoplasmas, and the ease of detection of these transformants makes this vector system suitable for the simultaneous screening and detection of cloned genes expressed as membrane proteins in mycoplasmas.


Assuntos
Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Expressão Gênica , Genética Microbiana/métodos , Proteínas de Membrana/metabolismo , Biologia Molecular/métodos , Mycoplasma gallisepticum/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Vetores Genéticos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Plasmídeos
4.
Vaccine ; 35(45): 6248-6253, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28941621

RESUMO

Control of the important poultry pathogen Mycoplasma gallisepticum is highly dependent on safe and efficacious attenuated vaccines. In order to assess a novel vaccine candidate we evaluated the safety and efficacy of the M. gallisepticum mutant 26-1. The oppD1 gene in this mutant has been interrupted by a signature-tagged transposon and previous studies have shown that it can colonise the respiratory tract of chickens without inducing significant disease. The capacity of the oppD1 mutant to induce protective immunity in the respiratory tract after vaccination by eye-drop was assessed by challenging vaccinated birds with an aerosol of the virulent M. gallisepticum strain Ap3AS. Vaccination with the oppD1 mutant was shown to fully protect against the lesions caused by pathogenic M. gallisepticum in the air sacs and tracheas. It also protected against the effect of infection on weight gain, and partially protected against colonisation of the trachea by virulent M. gallisepticum. These results indicate that a M. gallisepticum mutant with the oppD1 gene knocked out could be used as a live attenuated vaccine as it is both safe and efficacious when administered by eyedrop to chickens.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Infecções por Mycoplasma/imunologia , Mycoplasma gallisepticum/genética , Doenças das Aves Domésticas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Traqueia/imunologia , Traqueia/microbiologia , Vacinação/efeitos adversos , Vacinação/veterinária , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Virulência/imunologia , Aumento de Peso/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa