Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25842-25854, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237105

RESUMO

A thermally bi-directionally tunable arrayed waveguide grating (TBDTAWG) is proposed and demonstrated on a silicon-on-insulator (SOI) platform. The device is composed of passive and active designs for realizations of an AWG and fine tuning of its filtering responses. Given that the required length difference between adjacent arrayed waveguides for the SOI platform is considerably short (∼3-5 µm) due to a high index contrast, an S-shaped architecture with a larger footprint instead of a rectangular one is employed in the AWG. Bi-directionally tunable functions, i.e., both red- and blue-shift tunable functions, can be achieved by using two triangular thermal-tuning regions with complementary phase distributions in the S-shaped architecture despite using only materials with positive thermo-optic coefficients, i.e., Si and SiO2. Measurement results illustrate that both red- or blue-shifted spectra can be achieved and a linear bi-directional shift-to-power ratio of ±30.5 nm/W as well as a wide tuning range of 8 nm can be obtained under an electrical voltage range of 0-2.5 V, showing an agreement between the measurement results and two-dimensional simulation results. This also shows the potential of the proposed TBDTAWG for automatically stabilizing the spectral responses of AWG-based (de)multiplexers for coarse or dense wavelength division multiplexing communication systems by using a feedback control circuit.

2.
Opt Express ; 29(17): 27362-27372, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615154

RESUMO

We report the first demonstration of broadband adiabatic directional couplers in thin-film lithium niobate on insulator (LNOI) waveguides. A three LN-waveguide configuration with each waveguide having a ridge cross section of less than 1 square micron, built atop a layer of SiO2 based on a 500-µm-thick Si substrate, has been designed and constructed to optically emulate a three-state stimulated Raman adiabatic passage system, with which a unique counterintuitive adiabatic light transfer phenomenon in a high coupling efficiency of >97% (corresponding to a >15 dB splitting ratio) spanning telecom S, C, and L bands for both TE and TM polarization modes has been observed for a 2-mm long coupler length. An even broader operating bandwidth of >800 nm of the device can be found from the simulation fitting of the experimental data. The footprint of the realized LNOI adiabatic coupler has been reduced by >99% compared to its bulk counterparts. Such an ultra-compact, broadband LNOI adiabatic coupler can be further used to implement or integrate with various photonic elements, a potential building block for realizing large-scale integrated photonic (quantum) circuits in LN.

3.
Opt Express ; 19(12): 11890-6, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716422

RESUMO

The attenuator for the wavelength at 1550 nm is fabricated by using the capillary effect to infiltrate liquid crystal (LC) E7 into hollow waveguides (HWGs) on silicon substrate with SiO2 cladding layer. The length of the waveguide is 0.4 cm. The device can be operated with relatively low driving voltage below 5 V(pp) with the distance between two electrodes to be 9 µm. The light attenuation of the device can be over 30 dB. The performance of the device is independent of the polarization states of the input light.

4.
Appl Opt ; 50(2): 227-30, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21221149

RESUMO

In this paper, we describe a theoretical and experimental study of a wavelength-selective filter derived from hollow optical waveguides composed of Bragg reflectors with defect layers on a silicon substrate. The defect states of the transmission filter at wavelengths of 1519 and 1571 nm were realized using one-dimensional photonic crystals (1D PCs) formed from a-Si and SiO(2). The transmission spectra of the filter waveguides and the band structure of the defect 1D PCs were calculated using the two-dimensional finite-difference time-domain and transfer matrix methods, respectively. The device exhibited the narrow bandwidths of 0.5 and 1.1 nm for wavelengths of 1571 and 1519 nm, respectively.

5.
Opt Express ; 16(19): 15069-73, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18795044

RESUMO

In this study, a hollow bent waveguide with distributed Bragg reflectors (DBR) in silicon substrate was presented theoretically and experimentally. We used the two-dimensional finite-difference time-domain method to simulate bending transmission efficiencies for arc- and cut-type 90 degrees -bent waveguides. The air core was embedded by Si(3)N(4)/SiO(2) multilayer. The multilayer stacks were deposited by using plasma-enhanced chemical vapor deposition on the top and bottom of air core. The lowest 90 degree bending loss is around 3.9dB for the arc-type bending waveguides and 0.8dB for cut-type bending waveguides, respectively. This waveguide demonstrates a possibility for higher density of integration in planar light wave circuits.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Silício/química , Simulação por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa